期刊文献+

Mobile Phone Antenna with Reduced Radiation into Inner Ear

Mobile Phone Antenna with Reduced Radiation into Inner Ear
下载PDF
导出
摘要 Health hazards are of great concern to cellular phone users. One important measure of the effect of electromagnetic radiation into human body is the specific absorption rate (SAR). If the human body is exposed to electromagnetic radiation, the amount of power absorbed by its tissues per mass volume should be limited and not to exceed a maximum SAR value. The cellular phone radiated through its antenna in all directions a certain amount of electromagnetic energy. This energy is concentrated in the near field region, where the user’s head is located during the call. The closest organ that is very sensitive to temperature change is the inner ear (it is just under the cellular phone antenna) where it contains a controlled viscosity liquid. In this paper we devise a two-antenna design to generate a low radiation in the direction of user’s head while using the cellular phone. By creating a null in the radiation pattern in the direction of user’s head we minimize the risk of hazards on the user. We optimize the null steering such that the device maintains a good connection to its base station and keeps the SAR level under the allowed maximum value using Lagrange method. To implement the analytical solution in real time simulated annealing (SA) algorithm is used. Results showed that we could steer the radiation pattern to optimize the radiated power in the direction of base station under the limited SAR level constraint. Simulated annealing algorithm is adopted to find the near optimal delay value to steer the antenna radiation pattern since it finds the global optimal point. It shows that a real time processing on the mobile unit can be performed to solve for the best null direction while the device is active. Health hazards are of great concern to cellular phone users. One important measure of the effect of electromagnetic radiation into human body is the specific absorption rate (SAR). If the human body is exposed to electromagnetic radiation, the amount of power absorbed by its tissues per mass volume should be limited and not to exceed a maximum SAR value. The cellular phone radiated through its antenna in all directions a certain amount of electromagnetic energy. This energy is concentrated in the near field region, where the user’s head is located during the call. The closest organ that is very sensitive to temperature change is the inner ear (it is just under the cellular phone antenna) where it contains a controlled viscosity liquid. In this paper we devise a two-antenna design to generate a low radiation in the direction of user’s head while using the cellular phone. By creating a null in the radiation pattern in the direction of user’s head we minimize the risk of hazards on the user. We optimize the null steering such that the device maintains a good connection to its base station and keeps the SAR level under the allowed maximum value using Lagrange method. To implement the analytical solution in real time simulated annealing (SA) algorithm is used. Results showed that we could steer the radiation pattern to optimize the radiated power in the direction of base station under the limited SAR level constraint. Simulated annealing algorithm is adopted to find the near optimal delay value to steer the antenna radiation pattern since it finds the global optimal point. It shows that a real time processing on the mobile unit can be performed to solve for the best null direction while the device is active.
出处 《International Journal of Communications, Network and System Sciences》 2014年第11期474-484,共11页 通讯、网络与系统学国际期刊(英文)
关键词 Electromagnetic RADIATION SAR PATCH Antenna EM Health Hazards LAGRANGE MULTIPLIER and SIMULATED ANNEALING Electromagnetic Radiation SAR Patch Antenna EM Health Hazards Lagrange Multiplier and Simulated Annealing
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部