摘要
The term “customer churn” is used in the industry of information and communication technology (ICT) to indicate those customers who are about to leave for a new competitor, or end their subscription. Predicting this behavior is very important for real life market and competition, and it is essential to manage it. In this paper, three hybrid models are investigated to develop an accurate and efficient churn prediction model. The three models are based on two phases;the clustering phase and the prediction phase. In the first phase, customer data is filtered. The second phase predicts the customer behavior. The first model investigates the k-means algorithm for data filtering, and Multilayer Perceptron Artificial Neural Networks (MLP-ANN) for prediction. The second model uses hierarchical clustering with MLP-ANN. The third one uses self organizing maps (SOM) with MLP-ANN. The three models are developed based on real data then the accuracy and churn rate values are calculated and compared. The comparison with the other models shows that the three hybrid models outperformed single common models.
The term “customer churn” is used in the industry of information and communication technology (ICT) to indicate those customers who are about to leave for a new competitor, or end their subscription. Predicting this behavior is very important for real life market and competition, and it is essential to manage it. In this paper, three hybrid models are investigated to develop an accurate and efficient churn prediction model. The three models are based on two phases;the clustering phase and the prediction phase. In the first phase, customer data is filtered. The second phase predicts the customer behavior. The first model investigates the k-means algorithm for data filtering, and Multilayer Perceptron Artificial Neural Networks (MLP-ANN) for prediction. The second model uses hierarchical clustering with MLP-ANN. The third one uses self organizing maps (SOM) with MLP-ANN. The three models are developed based on real data then the accuracy and churn rate values are calculated and compared. The comparison with the other models shows that the three hybrid models outperformed single common models.