期刊文献+

Hybrid Data Mining Models for Predicting Customer Churn 被引量:1

Hybrid Data Mining Models for Predicting Customer Churn
下载PDF
导出
摘要 The term “customer churn” is used in the industry of information and communication technology (ICT) to indicate those customers who are about to leave for a new competitor, or end their subscription. Predicting this behavior is very important for real life market and competition, and it is essential to manage it. In this paper, three hybrid models are investigated to develop an accurate and efficient churn prediction model. The three models are based on two phases;the clustering phase and the prediction phase. In the first phase, customer data is filtered. The second phase predicts the customer behavior. The first model investigates the k-means algorithm for data filtering, and Multilayer Perceptron Artificial Neural Networks (MLP-ANN) for prediction. The second model uses hierarchical clustering with MLP-ANN. The third one uses self organizing maps (SOM) with MLP-ANN. The three models are developed based on real data then the accuracy and churn rate values are calculated and compared. The comparison with the other models shows that the three hybrid models outperformed single common models. The term “customer churn” is used in the industry of information and communication technology (ICT) to indicate those customers who are about to leave for a new competitor, or end their subscription. Predicting this behavior is very important for real life market and competition, and it is essential to manage it. In this paper, three hybrid models are investigated to develop an accurate and efficient churn prediction model. The three models are based on two phases;the clustering phase and the prediction phase. In the first phase, customer data is filtered. The second phase predicts the customer behavior. The first model investigates the k-means algorithm for data filtering, and Multilayer Perceptron Artificial Neural Networks (MLP-ANN) for prediction. The second model uses hierarchical clustering with MLP-ANN. The third one uses self organizing maps (SOM) with MLP-ANN. The three models are developed based on real data then the accuracy and churn rate values are calculated and compared. The comparison with the other models shows that the three hybrid models outperformed single common models.
出处 《International Journal of Communications, Network and System Sciences》 2015年第5期91-96,共6页 通讯、网络与系统学国际期刊(英文)
关键词 Data Mining K-MEANS Hierarchical Cluster Self ORGANIZING MAPS MULTILAYER PERCEPTRON Artificial Neural Networks CHURN Prediction Data Mining k-Means Hierarchical Cluster Self Organizing Maps Multilayer Perceptron Artificial Neural Networks Churn Prediction
  • 相关文献

参考文献1

二级参考文献1

共引文献70

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部