期刊文献+

X-Hamiltonian Surface Broadcast Algorithm

X-Hamiltonian Surface Broadcast Algorithm
下载PDF
导出
摘要 Broadcast is one of the most important approach in distributed memory parallel computers that is used to find a routing approach from one source to all nodes in the mesh. Broadcasting is a data communication task in which corresponds to one-to-all communication. Routing schema is the approach used to determine the road that is used to send a message from a source node to destination nodes. In this paper, we propose an efficient algorithm for broadcasting on an all-port wormhole-routed 3D mesh with arbitrary size. Wormhole routing is a fundamental routing mechanism in modern parallel computers which is characterized with low communication latency. We show how to apply this approach to 3-D meshes. In wormhole, routing large network packets are broken into small pieces called FLITs (flow control digits). The destination address is kept in the first flit which is called the header flit and sets up the routing behavior for all subsequent flits associated with the packet. In this paper, we introduce an efficient algorithm, X-Hamiltonian Surface Broadcast (X-HSB) which uses broadcast communication facility with deadlock-free wormhole routing in general three dimensional networks. In this paper, the behaviors of this algorithm are compared to the previous results using simulation;our paradigm reduces broadcast latency and is simpler. The results presented in this paper indicate the advantage of our proposed algorithm. Broadcast is one of the most important approach in distributed memory parallel computers that is used to find a routing approach from one source to all nodes in the mesh. Broadcasting is a data communication task in which corresponds to one-to-all communication. Routing schema is the approach used to determine the road that is used to send a message from a source node to destination nodes. In this paper, we propose an efficient algorithm for broadcasting on an all-port wormhole-routed 3D mesh with arbitrary size. Wormhole routing is a fundamental routing mechanism in modern parallel computers which is characterized with low communication latency. We show how to apply this approach to 3-D meshes. In wormhole, routing large network packets are broken into small pieces called FLITs (flow control digits). The destination address is kept in the first flit which is called the header flit and sets up the routing behavior for all subsequent flits associated with the packet. In this paper, we introduce an efficient algorithm, X-Hamiltonian Surface Broadcast (X-HSB) which uses broadcast communication facility with deadlock-free wormhole routing in general three dimensional networks. In this paper, the behaviors of this algorithm are compared to the previous results using simulation;our paradigm reduces broadcast latency and is simpler. The results presented in this paper indicate the advantage of our proposed algorithm.
作者 Amnah El-Obaid Amnah El-Obaid(Department of Basic Science, Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan, Amman, Jordan)
出处 《International Journal of Communications, Network and System Sciences》 2016年第6期269-279,共11页 通讯、网络与系统学国际期刊(英文)
关键词 Broadcasting Communication Wormhole Routing Hamiltonian Model 3-D Mesh DEADLOCK-FREE Broadcasting Communication Wormhole Routing Hamiltonian Model 3-D Mesh Deadlock-Free
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部