期刊文献+

Applying UML and Machine Learning to Enhance System Analysis and Design

Applying UML and Machine Learning to Enhance System Analysis and Design
下载PDF
导出
摘要 System analysis and design (SAD) is a crucial process in the development of software systems. The impact of modeling techniques and software engineering practices on SAD has been the focus of research for many years. Two such techniques that have had a significant impact on SAD are Unified Modeling Language (UML) and machine learning. UML has been used to model the structure and behavior of software systems, while machine learning has been used to automatically learn patterns in data and make predictions. The purpose of this paper is to review the literature on the impact of UML and machine learning on SAD. We summarize the findings from several studies and highlight the key insights related to the benefits and limitations of these techniques for SAD. Our review shows that both UML and machine learning have had a positive impact on SAD, with UML improving communication and documentation, and machine learning improving the accuracy of predictions. However, there are also challenges associated with their use, such as the need for expertise and the difficulty of interpreting machine learning models. Our findings suggest that a combination of UML and machine learning can enhance SAD by leveraging the strengths of each technique. System analysis and design (SAD) is a crucial process in the development of software systems. The impact of modeling techniques and software engineering practices on SAD has been the focus of research for many years. Two such techniques that have had a significant impact on SAD are Unified Modeling Language (UML) and machine learning. UML has been used to model the structure and behavior of software systems, while machine learning has been used to automatically learn patterns in data and make predictions. The purpose of this paper is to review the literature on the impact of UML and machine learning on SAD. We summarize the findings from several studies and highlight the key insights related to the benefits and limitations of these techniques for SAD. Our review shows that both UML and machine learning have had a positive impact on SAD, with UML improving communication and documentation, and machine learning improving the accuracy of predictions. However, there are also challenges associated with their use, such as the need for expertise and the difficulty of interpreting machine learning models. Our findings suggest that a combination of UML and machine learning can enhance SAD by leveraging the strengths of each technique.
作者 Aparna Gadhi Ragha Madhavi Gondu Chinna Manikanta Bandaru Keerthana Chit Reddy Olatunde Abiona Aparna Gadhi;Ragha Madhavi Gondu;Chinna Manikanta Bandaru;Keerthana Chit Reddy;Olatunde Abiona(Department of Computer Information Systems, Indiana University Northwest, Gary, IN, USA)
出处 《International Journal of Communications, Network and System Sciences》 2023年第5期67-76,共10页 通讯、网络与系统学国际期刊(英文)
关键词 UML Machine Learning System Analysis DESIGN IMPLEMENTATION UML Machine Learning System Analysis Design Implementation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部