期刊文献+

Compound Hidden Markov Model for Activity Labelling

Compound Hidden Markov Model for Activity Labelling
下载PDF
导出
摘要 This research presents a novel way of labelling human activities from the skeleton output computed from RGB-D data from vision-based motion capture systems. The activities are labelled by means of a Compound Hidden Markov Model. The linkage of several Linear Hidden Markov Models to common states, makes a Compound Hidden Markov Model. Each separate Linear Hidden Markov Model has motion information of a human activity. The sequence of most likely states, from a sequence of observations, indicates which activities are performed by a person in an interval of time. The purpose of this research is to provide a service robot with the capability of human activity awareness, which can be used for action planning with implicit and indirect Human-Robot Interaction. The proposed Compound Hidden Markov Model, made of Linear Hidden Markov Models per activity, labels activities from unknown subjects with an average accuracy of 59.37%, which is higher than the average labelling accuracy for activities of unknown subjects of an Ergodic Hidden Markov Model (6.25%), and a Compound Hidden Markov Model with activities modelled by a single state (18.75%). This research presents a novel way of labelling human activities from the skeleton output computed from RGB-D data from vision-based motion capture systems. The activities are labelled by means of a Compound Hidden Markov Model. The linkage of several Linear Hidden Markov Models to common states, makes a Compound Hidden Markov Model. Each separate Linear Hidden Markov Model has motion information of a human activity. The sequence of most likely states, from a sequence of observations, indicates which activities are performed by a person in an interval of time. The purpose of this research is to provide a service robot with the capability of human activity awareness, which can be used for action planning with implicit and indirect Human-Robot Interaction. The proposed Compound Hidden Markov Model, made of Linear Hidden Markov Models per activity, labels activities from unknown subjects with an average accuracy of 59.37%, which is higher than the average labelling accuracy for activities of unknown subjects of an Ergodic Hidden Markov Model (6.25%), and a Compound Hidden Markov Model with activities modelled by a single state (18.75%).
出处 《International Journal of Intelligence Science》 2015年第5期177-195,共19页 智能科学国际期刊(英文)
关键词 Hidden MARKOV MODEL COMPOUND Hidden MARKOV MODEL ACTIVITY Recognition HUMAN ACTIVITY HUMAN MOTION MOTION Capture Skeleton Computer Vision Machine Learning MOTION Analysis Hidden Markov Model Compound Hidden Markov Model Activity Recognition Human Activity Human Motion Motion Capture Skeleton Computer Vision Machine Learning Motion Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部