期刊文献+

Efficiency Analysis of the Autofocusing Algorithm Based on Orthogonal Transforms

下载PDF
导出
摘要 Efficiency of the autofocusing algorithm implementations based on various orthogonal transforms is examined. The algorithm uses the variance of an image acquired by a sensor as a focus function. To compute the estimate of the variance we exploit the equivalence between that estimate and the image orthogonal expansion. Energy consumption of three implementations exploiting either of the following fast orthogonal transforms: the discrete cosine, the Walsh-Hadamard, and the Haar wavelet one, is evaluated and compared. Furthermore, it is conjectured that the computation precision can considerably be reduced if the image is heavily corrupted by the noise, and a simple problem of optimal word bit-length selection with respect to the signal variance is analyzed. Efficiency of the autofocusing algorithm implementations based on various orthogonal transforms is examined. The algorithm uses the variance of an image acquired by a sensor as a focus function. To compute the estimate of the variance we exploit the equivalence between that estimate and the image orthogonal expansion. Energy consumption of three implementations exploiting either of the following fast orthogonal transforms: the discrete cosine, the Walsh-Hadamard, and the Haar wavelet one, is evaluated and compared. Furthermore, it is conjectured that the computation precision can considerably be reduced if the image is heavily corrupted by the noise, and a simple problem of optimal word bit-length selection with respect to the signal variance is analyzed.
出处 《Journal of Computer and Communications》 2013年第6期41-45,共5页 电脑和通信(英文)
基金 supported by the NCN grant UMO-2011/01/B/ST7/00666.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部