期刊文献+

Study on the Luminescence Properties of the Strain Compensated Quantum Well

Study on the Luminescence Properties of the Strain Compensated Quantum Well
下载PDF
导出
摘要 Compared with the conventional strained quantum well, the InGaAs/GaAsP strain compensated quantum well (SCQW) has better optical properties, as the well layer and the barrier layer lattice mismatch with each other which results in the introduction of stress. In this paper, we adopted the Kohn-Luttinger Hamiltonian, conducted some theoretical calculations using the transfer matrix method, and finally verified the following change trend of the InGaAs quantum well following the In-group through experiments: the growth of the low In-group can improve the epitaxial flatness of the active area;the growth of the high In-group can increase the wavelength as well as the strain. In this paper, we adopted the AlGaAs barrier material instead of the GaAsP, made an analysis on the level changes of the compensation quantum well, and successfully fostered the strain compensated quantum well structure using the metal-organic chemical vapor deposition (MOCVD) system which had better optical properties compared with the strained quantum wells. Compared with the conventional strained quantum well, the InGaAs/GaAsP strain compensated quantum well (SCQW) has better optical properties, as the well layer and the barrier layer lattice mismatch with each other which results in the introduction of stress. In this paper, we adopted the Kohn-Luttinger Hamiltonian, conducted some theoretical calculations using the transfer matrix method, and finally verified the following change trend of the InGaAs quantum well following the In-group through experiments: the growth of the low In-group can improve the epitaxial flatness of the active area;the growth of the high In-group can increase the wavelength as well as the strain. In this paper, we adopted the AlGaAs barrier material instead of the GaAsP, made an analysis on the level changes of the compensation quantum well, and successfully fostered the strain compensated quantum well structure using the metal-organic chemical vapor deposition (MOCVD) system which had better optical properties compared with the strained quantum wells.
出处 《Journal of Computer and Communications》 2013年第7期40-45,共6页 电脑和通信(英文)
关键词 INGAAS/ALGAAS InGaAs/GaAsP STRAIN Compensated Quantum Well MOCVD InGaAs/AlGaAs InGaAs/GaAsP Strain Compensated Quantum Well MOCVD
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部