摘要
In social tagging systems, users are allowed to label resources with tags, and thus the system builds a personalized tag vocabulary for every user based on their distinct preferences. In order to make the best of the personalized characteristic of users’ tagging behavior, firstly the transfer matrix is used in this paper, and the tag distributions of query resources are mapped to users’ query before the recommendation. Meanwhile, we find that only considering the user’s preference model, the method cannot recommend new tags for users. So we utilize the thought of collaborative filtering, and produce the recommend tags based on the query user and his/her nearest neighbors' preference models. The experiments conducted on the Delicious corpus show that our method combining transfer matrix with collaborative filtering produces better recommendation results.
In social tagging systems, users are allowed to label resources with tags, and thus the system builds a personalized tag vocabulary for every user based on their distinct preferences. In order to make the best of the personalized characteristic of users’ tagging behavior, firstly the transfer matrix is used in this paper, and the tag distributions of query resources are mapped to users’ query before the recommendation. Meanwhile, we find that only considering the user’s preference model, the method cannot recommend new tags for users. So we utilize the thought of collaborative filtering, and produce the recommend tags based on the query user and his/her nearest neighbors' preference models. The experiments conducted on the Delicious corpus show that our method combining transfer matrix with collaborative filtering produces better recommendation results.