摘要
At the early stage of software lifecycle, the complexity measurement of UML class diagrams plays an important role in software development, testing and maintenance, and provides guidance for developing high quality software. In order to study which one is better, simple or complex metrics, this paper analyzes and compares four typical metrics of UML class diagrams from experimental software engineering view points. Understandability, analyzability and maintainability were classified and predicted for 27 class diagrams related to a banking system by means of algorithm C5.0 within the famous toolkit Weka. Results suggest that the performance of simple metrics is not inferior to that of complex metrics, in some cases even better than that of complex metrics.
At the early stage of software lifecycle, the complexity measurement of UML class diagrams plays an important role in software development, testing and maintenance, and provides guidance for developing high quality software. In order to study which one is better, simple or complex metrics, this paper analyzes and compares four typical metrics of UML class diagrams from experimental software engineering view points. Understandability, analyzability and maintainability were classified and predicted for 27 class diagrams related to a banking system by means of algorithm C5.0 within the famous toolkit Weka. Results suggest that the performance of simple metrics is not inferior to that of complex metrics, in some cases even better than that of complex metrics.