期刊文献+

Discriminant Neighborhood Structure Embedding Using Trace Ratio Criterion for Image Recognition

Discriminant Neighborhood Structure Embedding Using Trace Ratio Criterion for Image Recognition
下载PDF
导出
摘要 Dimensionality reduction is very important in pattern recognition, machine learning, and image recognition. In this paper, we propose a novel linear dimensionality reduction technique using trace ratio criterion, namely Discriminant Neighbourhood Structure Embedding Using Trace Ratio Criterion (TR-DNSE). TR-DNSE preserves the local intrinsic geometric structure, characterizing properties of similarity and diversity within each class, and enforces the separability between different classes by maximizing the sum of the weighted distances between nearby points from different classes. Experiments on four image databases show the effectiveness of the proposed approach. Dimensionality reduction is very important in pattern recognition, machine learning, and image recognition. In this paper, we propose a novel linear dimensionality reduction technique using trace ratio criterion, namely Discriminant Neighbourhood Structure Embedding Using Trace Ratio Criterion (TR-DNSE). TR-DNSE preserves the local intrinsic geometric structure, characterizing properties of similarity and diversity within each class, and enforces the separability between different classes by maximizing the sum of the weighted distances between nearby points from different classes. Experiments on four image databases show the effectiveness of the proposed approach.
出处 《Journal of Computer and Communications》 2015年第11期64-70,共7页 电脑和通信(英文)
关键词 Dimensionality Reduction MANIFOLD Learning Variability TRACE RATIO Dimensionality Reduction Manifold Learning Variability Trace Ratio
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部