期刊文献+

3D Depth Measurement for Holoscopic 3D Imaging System

3D Depth Measurement for Holoscopic 3D Imaging System
下载PDF
导出
摘要 Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms. Holoscopic 3D imaging is a true 3D imaging system mimics fly’s eye technique to acquire a true 3D optical model of a real scene. To reconstruct the 3D image computationally, an efficient implementation of an Auto-Feature-Edge (AFE) descriptor algorithm is required that provides an individual feature detector for integration of 3D information to locate objects in the scene. The AFE descriptor plays a key role in simplifying the detection of both edge-based and region-based objects. The detector is based on a Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) algorithm. This is distinctive for each Feature-Edge (FE) block i.e. the large contrast changes (gradients) in FE are easier to localise. The novelty of this work lies in generating a free-noise 3D-Map (3DM) according to a correlation analysis of region contours. This automatically combines the exploitation of the available depth estimation technique with edge-based feature shape recognition technique. The application area consists of two varied domains, which prove the efficiency and robustness of the approach: a) extracting a set of setting feature-edges, for both tracking and mapping process for 3D depthmap estimation, and b) separation and recognition of focus objects in the scene. Experimental results show that the proposed 3DM technique is performed efficiently compared to the state-of-the-art algorithms.
作者 Eman Alazawi Mohammad Rafiq Swash Maysam Abbod Eman Alazawi;Mohammad Rafiq Swash;Maysam Abbod(Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences Brunel University, West London, UK)
出处 《Journal of Computer and Communications》 2016年第6期49-67,共19页 电脑和通信(英文)
关键词 Holoscopic 3D Image Edge Detection Auto-Thresholding Depthmap Integral Image Local Histogram Analysis Object Recognition and Depth Measurement Holoscopic 3D Image Edge Detection Auto-Thresholding Depthmap Integral Image Local Histogram Analysis Object Recognition and Depth Measurement
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部