期刊文献+

Link Quality Prediction for 802.11 MANETs in Urban Microcells

Link Quality Prediction for 802.11 MANETs in Urban Microcells
下载PDF
导出
摘要 In this paper we derive the optimal link quality predictor (LQPR) whose parameters are estimated from signal power and node speed samples. We propose a fast estimator for these parameters whose computational complexity is three orders lower than that of the optimal estimator with only a slight loss in accuracy thus enabling real- time execution. We show that using the most recent local mean of the signal as a predictor of future signal strength is also a very close approximation to the optimal predictor. This is the central result of this paper. It obviates the need for complex and/or computationally intensive link quality predictors for 802.11 in urban microcells and has the advantage of not requiring node speed information. The LQPRs are evaluated against the lower error bound. We show that the LQPR based on the most recent local mean of the signal predicts the packet reception probability for pedestrians in urban microcells on average with a mean absolute error of 13.47%, 16.54%, 18.21% and 19.38% for 1 s, 2 s, 3 s and 4 s into the future respectively. This LQP accuracy resembles closely the lower error bound with, for example, a difference of only 2.47% at 2 s into the future. In this paper we derive the optimal link quality predictor (LQPR) whose parameters are estimated from signal power and node speed samples. We propose a fast estimator for these parameters whose computational complexity is three orders lower than that of the optimal estimator with only a slight loss in accuracy thus enabling real- time execution. We show that using the most recent local mean of the signal as a predictor of future signal strength is also a very close approximation to the optimal predictor. This is the central result of this paper. It obviates the need for complex and/or computationally intensive link quality predictors for 802.11 in urban microcells and has the advantage of not requiring node speed information. The LQPRs are evaluated against the lower error bound. We show that the LQPR based on the most recent local mean of the signal predicts the packet reception probability for pedestrians in urban microcells on average with a mean absolute error of 13.47%, 16.54%, 18.21% and 19.38% for 1 s, 2 s, 3 s and 4 s into the future respectively. This LQP accuracy resembles closely the lower error bound with, for example, a difference of only 2.47% at 2 s into the future.
作者 Gregor Gaertner Eamonn O. Nuallain Gregor Gaertner;Eamonn O. Nuallain(School of Computer Science and Statistics, Trinity College, Dublin, Ireland)
出处 《Journal of Computer and Communications》 2016年第13期61-77,共17页 电脑和通信(英文)
关键词 Mobile Communications PROPAGATION Quality Assurance Mobile Communications Propagation Quality Assurance
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部