期刊文献+

A Novel Prediction Method of Protein Structural Classes Based on Protein Super-Secondary Structure

A Novel Prediction Method of Protein Structural Classes Based on Protein Super-Secondary Structure
下载PDF
导出
摘要 At present, the feature extraction of protein sequences is the most basic issue to predict protein structural classes and is also the key problem to decide the quality of prediction. In order to predict protein structural classes accurately, we construct a 14-dimensional feature vector based on protein secondary and super-secondary structure information to reflect the content and spatial ordering of the given protein sequences. Among the vector, seven features about -helix bundle, hairpin motifs, Rossman folds, -plaits and other super-secondary structure information are first proposed in our paper. Experiments show that our method improves overall accuracy of lower similarity datasets 1189 and 640 by 0.9% - 3.8% and 0.5% - 4.2% respectively compared with other methods and has a competitive advantage for predicting proteins in and classes. At present, the feature extraction of protein sequences is the most basic issue to predict protein structural classes and is also the key problem to decide the quality of prediction. In order to predict protein structural classes accurately, we construct a 14-dimensional feature vector based on protein secondary and super-secondary structure information to reflect the content and spatial ordering of the given protein sequences. Among the vector, seven features about -helix bundle, hairpin motifs, Rossman folds, -plaits and other super-secondary structure information are first proposed in our paper. Experiments show that our method improves overall accuracy of lower similarity datasets 1189 and 640 by 0.9% - 3.8% and 0.5% - 4.2% respectively compared with other methods and has a competitive advantage for predicting proteins in and classes.
作者 Longlong Liu Jing Cui Jie Zhou Longlong Liu;Jing Cui;Jie Zhou(Department of Mathematical Sciences, Ocean University of China, Qingdao, China)
出处 《Journal of Computer and Communications》 2016年第15期54-62,共10页 电脑和通信(英文)
关键词 PROTEINS Super-Secondary Structure Low Similarity New Features Proteins Super-Secondary Structure Low Similarity New Features
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部