期刊文献+

Improvement of Forward-Backward Pursuit Algorithm Based on Weak Selection

Improvement of Forward-Backward Pursuit Algorithm Based on Weak Selection
下载PDF
导出
摘要 Forward-backward pursuit (FBP) algorithm is a novel two-stage greedy approach. However once its forward and backward steps were determined during iteration, it would make computing time increased and affected the reconstruction efficiency. This paper presents a algorithm called forward-backward pursuit algorithm based on weak selection (SWFBP) by introducing threshold strategy into FBP algorithm, and in view of that in the first few iterations, most of the atoms which are selected are right, so this part of atoms are directly incorporated into support set instead of using backward strategy to reduce them. Flexible forward and backward steps accelerate the speed of atom selecting and improve the reconstruction accuracy. We compared SWFBP and FBP algorithm via one-dimensional signal and two-dimensional image reconstruction experiments. The simulation results demonstrate that compared with FBP, SWFBP algorithm has superior performance, including higher PSNR, faster computing speed and lower recovery time. Forward-backward pursuit (FBP) algorithm is a novel two-stage greedy approach. However once its forward and backward steps were determined during iteration, it would make computing time increased and affected the reconstruction efficiency. This paper presents a algorithm called forward-backward pursuit algorithm based on weak selection (SWFBP) by introducing threshold strategy into FBP algorithm, and in view of that in the first few iterations, most of the atoms which are selected are right, so this part of atoms are directly incorporated into support set instead of using backward strategy to reduce them. Flexible forward and backward steps accelerate the speed of atom selecting and improve the reconstruction accuracy. We compared SWFBP and FBP algorithm via one-dimensional signal and two-dimensional image reconstruction experiments. The simulation results demonstrate that compared with FBP, SWFBP algorithm has superior performance, including higher PSNR, faster computing speed and lower recovery time.
出处 《Journal of Computer and Communications》 2017年第1期9-19,共11页 电脑和通信(英文)
关键词 Compressed SENSING RECONSTRUCTION ALGORITHM FBP WEAK Selection Compressed Sensing Reconstruction Algorithm FBP Weak Selection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部