期刊文献+

A Hierarchical Grab Cut Image Segmentation Algorithm

A Hierarchical Grab Cut Image Segmentation Algorithm
下载PDF
导出
摘要 This paper aims to speed up a segmentation algorithm “Grab Cut” by separating the process of segmentation into hierarchical steps. The Grab Cut algorithm segments images by means of the color clustering concept and the process requires a lot of iteration for it to get converged. Therefore, it is a time-consuming process which we are interested in improving this process. In this study, we adopt the idea of hierarchical processing. The first step is to compute at low resolution to make the iteration much faster, and the second step use the result of the first step to carry on iteration at original resolution so that the total execution time can be reduced. Specifically speaking, segmentation of a low resolution image will lead to high-speed and similar-segmentation result to the segmentation at original resolution. Hence, once the iterations at low resolution have converged, we can utilize the parameters of segmentation result to initialize the next segmentation on original resolution. This way, the number of iteration of segmentation at original resolution will be reduced through the initialization of those parameters. Since the execution time of low resolution images is relatively short, the total hierarchical execution time will be reduced consequently. Also, we made a comparison among the four methods of reduction on image resolution. Finally, we found that reducing the number of basins by “Median Filter” resulted in best segmentation speed. This paper aims to speed up a segmentation algorithm “Grab Cut” by separating the process of segmentation into hierarchical steps. The Grab Cut algorithm segments images by means of the color clustering concept and the process requires a lot of iteration for it to get converged. Therefore, it is a time-consuming process which we are interested in improving this process. In this study, we adopt the idea of hierarchical processing. The first step is to compute at low resolution to make the iteration much faster, and the second step use the result of the first step to carry on iteration at original resolution so that the total execution time can be reduced. Specifically speaking, segmentation of a low resolution image will lead to high-speed and similar-segmentation result to the segmentation at original resolution. Hence, once the iterations at low resolution have converged, we can utilize the parameters of segmentation result to initialize the next segmentation on original resolution. This way, the number of iteration of segmentation at original resolution will be reduced through the initialization of those parameters. Since the execution time of low resolution images is relatively short, the total hierarchical execution time will be reduced consequently. Also, we made a comparison among the four methods of reduction on image resolution. Finally, we found that reducing the number of basins by “Median Filter” resulted in best segmentation speed.
出处 《Journal of Computer and Communications》 2018年第2期48-55,共8页 电脑和通信(英文)
关键词 IMAGE SEGMENTATION IMAGE Processing MEDIAN Filter Clustering Image Segmentation Image Processing Median Filter Clustering
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部