期刊文献+

Optimization of Convolutional Neural Network for Recognition of Vehicle Frame Number

Optimization of Convolutional Neural Network for Recognition of Vehicle Frame Number
下载PDF
导出
摘要 With the development of the economy and the surge in car ownership, the sale of used cars has been welcomed by more and more people, and the information of the vehicle condition is the focus information of them. The frame number is a unique number used in the vehicle, and by identifying it can quickly find out the vehicle models and manufacturers. The traditional character recognition method has the problem of complex feature extraction, and the convolutional neural network has unique advantages in processing two-dimensional images. This paper analyzed the key techniques of convolutional neural networks compared with traditional neural networks, and proposed improved methods for key technologies, thus increasing the recognition of characters and applying them to the recognition of frame number characters. With the development of the economy and the surge in car ownership, the sale of used cars has been welcomed by more and more people, and the information of the vehicle condition is the focus information of them. The frame number is a unique number used in the vehicle, and by identifying it can quickly find out the vehicle models and manufacturers. The traditional character recognition method has the problem of complex feature extraction, and the convolutional neural network has unique advantages in processing two-dimensional images. This paper analyzed the key techniques of convolutional neural networks compared with traditional neural networks, and proposed improved methods for key technologies, thus increasing the recognition of characters and applying them to the recognition of frame number characters.
出处 《Journal of Computer and Communications》 2018年第11期209-215,共7页 电脑和通信(英文)
关键词 FRAME NUMBER RECOGNITION Convolutional NEURAL Network (CNN) FEATURE Extraction Pooling Frame Number Recognition Convolutional Neural Network (CNN) Feature Extraction Pooling
  • 相关文献

参考文献7

二级参考文献122

  • 1Zilly F, Kluger J, Kauff P. Production rules for stereo acquisition[J]. Proceedings of the IEEE, 2011, 99(4): 590-606.
  • 2Urey H, Chellappan K V, Erden E, et al. State of the art in stereoscopicand autostereoscoic displays[J]. Proceedings of theIEEE, 2011, 99(4): 540-555.
  • 3You J Y, Xing L, Perkis A, et al. Perceptual quality assessmentfor stereoscopic images based on 2D image quality metrics anddisparity analysis[OL]. [2015-06-21]. http://events.engineering.asu.edu/vpqm/vpqm10/Proceedings_VPQM2010/vpqm_p09.pdf.
  • 4Benoit A, Le Callet P, Campisi P, et al. Using disparity forquality assessment of stereoscopic images[C] //Proceedings ofthe 15th IEEE International Conference on Image Processing.Los Alamitos: IEEE Computer Society Press, 2008: 389-392.
  • 5Bensalma R, Larabi M C. A perceptual metric for stereoscopicimage quality assessment based on the binocular energy[J].Multidimensional Systems and Signal Processing, 2013, 24(2):281-316.
  • 6Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEETransactions on Image Processing, 2011, 20(12): 3350-3364.
  • 7Saad M A, Bovik A C, Charrier C. Blind image quality assessment:a natural scene statistics approach in the DCT domain[J].IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352.
  • 8Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on ImageProcessing, 2012, 21(12): 4695-4708.
  • 9Hinton G E, Osindero S, Teh Y W. A fast learning algorithm fordeep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
  • 10Salakhutdinov R, Hinton G. Deep Boltzmann machines[J].Journal of Machine Learning Research-Proceedings Track,2009, 9(1): 448-455.

共引文献757

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部