期刊文献+

Dynamically Enlarge and Shrink Power Coverage to Speed Up Tag Identification in an RFID System

Dynamically Enlarge and Shrink Power Coverage to Speed Up Tag Identification in an RFID System
下载PDF
导出
摘要 In this paper, we present a power adjustment scheme to dynamically enlarge and shrink power coverage to speed up tag identification in an RFID system. By dividing a TDMA frame into time slots, the proposed power adjustment scheme can adaptively increase or decrease the transmission power of a reader. Specifically, due to the contention for a TDMA slot from numerous tags, three states of a slot could exist;they are respectively referred to as successful, collided, and idle states. An adjustment factor based on the three states is designed to dynamically adjust the transmission power of a reader. The design of the adjustment factor considers two different aspects. When the number of idle state far exceeds the number of collided state, the first aspect will enlarge the power such that more tags within the coverage can be concurrently identified. On the other hand, when the number of idle state is much smaller than the number of collided state, the second aspect will shrink the power such that the number of tags within the coverage is significantly reduced. The proposed power adjustment scheme is simulated using NS-3. In the simulation, we design three different topologies which place tags in three distributions, uniform, random, and hotspot. From the simulation results, we demonstrate that the proposed power adjustment scheme can speed up the tag identification and save energy consumption, particularly when a large number of tags are placed in hotspot distribution. In this paper, we present a power adjustment scheme to dynamically enlarge and shrink power coverage to speed up tag identification in an RFID system. By dividing a TDMA frame into time slots, the proposed power adjustment scheme can adaptively increase or decrease the transmission power of a reader. Specifically, due to the contention for a TDMA slot from numerous tags, three states of a slot could exist;they are respectively referred to as successful, collided, and idle states. An adjustment factor based on the three states is designed to dynamically adjust the transmission power of a reader. The design of the adjustment factor considers two different aspects. When the number of idle state far exceeds the number of collided state, the first aspect will enlarge the power such that more tags within the coverage can be concurrently identified. On the other hand, when the number of idle state is much smaller than the number of collided state, the second aspect will shrink the power such that the number of tags within the coverage is significantly reduced. The proposed power adjustment scheme is simulated using NS-3. In the simulation, we design three different topologies which place tags in three distributions, uniform, random, and hotspot. From the simulation results, we demonstrate that the proposed power adjustment scheme can speed up the tag identification and save energy consumption, particularly when a large number of tags are placed in hotspot distribution.
出处 《Journal of Computer and Communications》 2018年第11期247-263,共17页 电脑和通信(英文)
关键词 RFID TDMA TAG IDENTIFICATION DYNAMIC POWER Adjustment NS-3 RFID TDMA Tag Identification Dynamic Power Adjustment NS-3
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部