期刊文献+

Implementation of Manifold Learning Algorithm Isometric Mapping

Implementation of Manifold Learning Algorithm Isometric Mapping
下载PDF
导出
摘要 In dealing with high-dimensional data, such as the global climate model, facial data analysis, human gene distribution and so on, the problem of dimensionality reduction is often encountered, that is, to find the low dimensional structure hidden in high-dimensional data. Nonlinear dimensionality reduction facilitates the discovery of the intrinsic structure and relevance of the data and can make the high-dimensional data visible in the low dimension. The isometric mapping algorithm (Isomap) is an important algorithm for nonlinear dimensionality reduction, which originates from the traditional dimensionality reduction algorithm MDS. The MDS algorithm is based on maintaining the distance between the samples in the original space and the distance between the samples in the lower dimensional space;the distance used here is Euclidean distance, and the Isomap algorithm discards the Euclidean distance, and calculates the shortest path between samples by Floyd algorithm to approximate the geodesic distance along the manifold surface. Compared with the previous nonlinear dimensionality reduction algorithm, the Isomap algorithm can effectively compute a global optimal solution, and it can ensure that the data manifold converges to the real structure asymptotically. In dealing with high-dimensional data, such as the global climate model, facial data analysis, human gene distribution and so on, the problem of dimensionality reduction is often encountered, that is, to find the low dimensional structure hidden in high-dimensional data. Nonlinear dimensionality reduction facilitates the discovery of the intrinsic structure and relevance of the data and can make the high-dimensional data visible in the low dimension. The isometric mapping algorithm (Isomap) is an important algorithm for nonlinear dimensionality reduction, which originates from the traditional dimensionality reduction algorithm MDS. The MDS algorithm is based on maintaining the distance between the samples in the original space and the distance between the samples in the lower dimensional space;the distance used here is Euclidean distance, and the Isomap algorithm discards the Euclidean distance, and calculates the shortest path between samples by Floyd algorithm to approximate the geodesic distance along the manifold surface. Compared with the previous nonlinear dimensionality reduction algorithm, the Isomap algorithm can effectively compute a global optimal solution, and it can ensure that the data manifold converges to the real structure asymptotically.
机构地区 College of Science
出处 《Journal of Computer and Communications》 2019年第12期11-19,共9页 电脑和通信(英文)
关键词 MANIFOLD NONLINEAR Dimensionality REDUCTION ISOMAP ALGORITHM MDS ALGORITHM Manifold Nonlinear Dimensionality Reduction Isomap Algorithm MDS Algorithm
  • 相关文献

参考文献2

二级参考文献17

  • 1Sebastian HS, Lee DD. The manifold ways of perception. Science, 2000,290(12):2268-2269.
  • 2Roweis ST, Saul LK. Nonlinear dimensionality analysis by locally linear embedding. Science, 2000,290(12):2323-2326.
  • 3Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(12) :2319-2323.
  • 4Donoho DL, Grimes C. When does ISOMAP recover the natural parameterization of families of articulated images? Technical Report, 2002-27, Department of Statistics, Stanford University, 2002.
  • 5Donoho DL, Grimes C. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences, 2003,100(10):5591-5596.
  • 6Zhang CS, Wang J, Zhao NY, Zhang D. Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognition, 2004,37(1):325-336.
  • 7Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding. Neural Inform Process Systems, 2001,1255-1262.
  • 8Lee MD. Determining the dimensionality of multidimensional scaling models for cognitive modeling. Journal of Mathematical Psychology, 2001,45(4):149-166.
  • 9Camastra F. Data dimensionality estimation methods: A survey. Pattern Recognition, 2003,36:2945-2954.
  • 10Liu XW, Srivastavab A, Wang DL. Intrinsic generalization analysis of low dimensional representations. Neural Networks, 2003,16:537-545.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部