期刊文献+

Parallel Multiple Tabu Search for Multiobjective Urban Transit Scheduling Problem

Parallel Multiple Tabu Search for Multiobjective Urban Transit Scheduling Problem
下载PDF
导出
摘要 Urban Transit Scheduling Problem (UTSP) is concerned with determining reliable transit schedules for buses and drivers by considering the preferences of both passengers and operators based on the demand and the set of transit routes. This paper considered a UTSP which consisted of frequency setting, timetabling, and simultaneous bus and driver scheduling. A mixed integer multiobjective model was constructed to optimize the frequency of the routes by minimizing the number of buses, passenger’s waiting times and overcrowding. The model was further extended by incorporating timeslots in determining the frequencies during peak and off-peak hours throughout the time period. The timetabling problem studied two different scenarios which reflected the preferences of passengers and operators to assign the bus departure times at the first and last stop of a route. A set covering model was then adopted to minimize the number of buses and drivers simultaneously. A parallel tabu search algorithm was proposed to solve the problem by modifying the initialization process and incorporating intensification and diversification approaches to guide the search effectively from the different feasible domain in finding optimal solutions with lesser computational effort. Computational experiments were conducted on the well-known Mandl’s and Mumford’s benchmark networks to assess the effectiveness of the proposed algorithm. Competitive results are reported based on the performance metrics, as compared to other algorithms from the literature. Urban Transit Scheduling Problem (UTSP) is concerned with determining reliable transit schedules for buses and drivers by considering the preferences of both passengers and operators based on the demand and the set of transit routes. This paper considered a UTSP which consisted of frequency setting, timetabling, and simultaneous bus and driver scheduling. A mixed integer multiobjective model was constructed to optimize the frequency of the routes by minimizing the number of buses, passenger’s waiting times and overcrowding. The model was further extended by incorporating timeslots in determining the frequencies during peak and off-peak hours throughout the time period. The timetabling problem studied two different scenarios which reflected the preferences of passengers and operators to assign the bus departure times at the first and last stop of a route. A set covering model was then adopted to minimize the number of buses and drivers simultaneously. A parallel tabu search algorithm was proposed to solve the problem by modifying the initialization process and incorporating intensification and diversification approaches to guide the search effectively from the different feasible domain in finding optimal solutions with lesser computational effort. Computational experiments were conducted on the well-known Mandl’s and Mumford’s benchmark networks to assess the effectiveness of the proposed algorithm. Competitive results are reported based on the performance metrics, as compared to other algorithms from the literature.
出处 《Journal of Computer and Communications》 2020年第5期14-54,共41页 电脑和通信(英文)
关键词 Urban TRANSIT Scheduling MULTIPLE Tabu Search PARALLEL Frequency SETTING TIMETABLING Big Data Urban Transit Scheduling Multiple Tabu Search Parallel Frequency Setting Timetabling Big Data
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部