期刊文献+

Propagation Model Optimization Based on Ion Motion Optimization Algorithm for Efficient Deployment of eLTE Network

Propagation Model Optimization Based on Ion Motion Optimization Algorithm for Efficient Deployment of eLTE Network
下载PDF
导出
摘要 Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard K factors model and then uses the Ion motion optimization (IMO) algorithm to set up a propagation model adapted to the physical environment of each of the Cameroonian cities of Yaoundé and Bertoua for different frequencies and technologies. Drive tests were made on the CDMA network in the city of Yaoundé on one hand and on an LTE TDD network in the city of Bertoua on the other hand. IMO is used as the optimization algorithm to deduct a propagation model which fits the environment of the two considered towns. The calculation of the root-mean-square error (RMSE) between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura-Hata and K factors standard models, allowed us to conclude that the new model obtained in each of these two cities is better and more representative of our local environment than the Okumura-Hata currently implemented. The implementation shows that IMO can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the cities of Yaounde and Bertoua in Cameroon. Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard K factors model and then uses the Ion motion optimization (IMO) algorithm to set up a propagation model adapted to the physical environment of each of the Cameroonian cities of Yaoundé and Bertoua for different frequencies and technologies. Drive tests were made on the CDMA network in the city of Yaoundé on one hand and on an LTE TDD network in the city of Bertoua on the other hand. IMO is used as the optimization algorithm to deduct a propagation model which fits the environment of the two considered towns. The calculation of the root-mean-square error (RMSE) between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura-Hata and K factors standard models, allowed us to conclude that the new model obtained in each of these two cities is better and more representative of our local environment than the Okumura-Hata currently implemented. The implementation shows that IMO can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the cities of Yaounde and Bertoua in Cameroon.
作者 Deussom Djomadji Eric Michel Tsague Njatsa Austene Beldine Tonye Emmanuel Deussom Djomadji Eric Michel;Tsague Njatsa Austene Beldine;Tonye Emmanuel(Department of Electrical and Electronic Engineering, College of Technology, University of Buea, Buea, Cameroon;Division of Information and Communications Technology, NASPT, University of Yaoundé I, Yaoundé, Cameroon;Department of Electrical and Telecommunications, University of Yaoundé I, Yaoundé, Cameroon)
出处 《Journal of Computer and Communications》 2022年第11期171-196,共26页 电脑和通信(英文)
关键词 Drive Test IMO Propagation Models Root Mean Square Error Drive Test IMO Propagation Models Root Mean Square Error
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部