期刊文献+

End-to-End Auto-Encoder System for Deep Residual Shrinkage Network for AWGN Channels

End-to-End Auto-Encoder System for Deep Residual Shrinkage Network for AWGN Channels
下载PDF
导出
摘要 With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on Deep Residual Shrinkage Networks (DRSNs), where neural networks (DNNs) are used to implement the coding, decoding, modulation and demodulation functions of the communication system. Our proposed autoencoder communication system can better reduce the signal noise by adding an “attention mechanism” and “soft thresholding” modules and has better performance at various signal-to-noise ratios (SNR). Also, we have shown through comparative experiments that the system can operate at moderate block lengths and support different throughputs. It has been shown to work efficiently in the AWGN channel. Simulation results show that our model has a higher Bit-Error-Rate (BER) gain and greatly improved decoding performance compared to conventional modulation and classical autoencoder systems at various signal-to-noise ratios. With the rapid development of deep learning methods, the data-driven approach has shown powerful advantages over the model-driven one. In this paper, we propose an end-to-end autoencoder communication system based on Deep Residual Shrinkage Networks (DRSNs), where neural networks (DNNs) are used to implement the coding, decoding, modulation and demodulation functions of the communication system. Our proposed autoencoder communication system can better reduce the signal noise by adding an “attention mechanism” and “soft thresholding” modules and has better performance at various signal-to-noise ratios (SNR). Also, we have shown through comparative experiments that the system can operate at moderate block lengths and support different throughputs. It has been shown to work efficiently in the AWGN channel. Simulation results show that our model has a higher Bit-Error-Rate (BER) gain and greatly improved decoding performance compared to conventional modulation and classical autoencoder systems at various signal-to-noise ratios.
作者 Wenhao Zhao Shengbo Hu Wenhao Zhao;Shengbo Hu(School of Mathematical Sciences, Guizhou Normal University, Guiyang, China;School of Big Data and Computer Science, Guizhou Normal University, Guiyang, China)
出处 《Journal of Computer and Communications》 2023年第5期161-176,共16页 电脑和通信(英文)
关键词 Deep Residual Shrinkage Network Autoencoder End-To-End Learning Communication Systems Deep Residual Shrinkage Network Autoencoder End-To-End Learning Communication Systems
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部