期刊文献+

Dynamic Resource Allocation in LTE Radio Access Network Using Machine Learning Techniques

Dynamic Resource Allocation in LTE Radio Access Network Using Machine Learning Techniques
下载PDF
导出
摘要 Current LTE networks are experiencing significant growth in the number of users worldwide. The use of data services for online browsing, e-learning, online meetings and initiatives such as smart cities means that subscribers stay connected for long periods, thereby saturating a number of signalling resources. One of such resources is the Radio Resource Connected (RRC) parameter, which is allocated to eNodeBs with the aim of limiting the number of connected simultaneously in the network. The fixed allocation of this parameter means that, depending on the traffic at different times of the day and the geographical position, some eNodeBs are saturated with RRC resources (overused) while others have unused RRC resources. However, as these resources are limited, there is the problem of their underutilization (non-optimal utilization of resources at the eNodeB level) due to static allocation (manual configuration of resources). The objective of this paper is to design an efficient machine learning model that will take as input some key performance indices (KPIs) like traffic data, RRC, simultaneous users, etc., for each eNodeB per hour and per day and accurately predict the number of needed RRC resources that will be dynamically allocated to them in order to avoid traffic and financial losses to the mobile network operator. To reach this target, three machine learning algorithms have been studied namely: linear regression, convolutional neural networks and long short-term memory (LSTM) to train three models and evaluate them. The model trained with the LSTM algorithm gave the best performance with 97% accuracy and was therefore implemented in the proposed solution for RRC resource allocation. An interconnection architecture is also proposed to embed the proposed solution into the Operation and maintenance network of a mobile network operator. In this way, the proposed solution can contribute to developing and expanding the concept of Self Organizing Network (SON) used in 4G and 5G networks. Current LTE networks are experiencing significant growth in the number of users worldwide. The use of data services for online browsing, e-learning, online meetings and initiatives such as smart cities means that subscribers stay connected for long periods, thereby saturating a number of signalling resources. One of such resources is the Radio Resource Connected (RRC) parameter, which is allocated to eNodeBs with the aim of limiting the number of connected simultaneously in the network. The fixed allocation of this parameter means that, depending on the traffic at different times of the day and the geographical position, some eNodeBs are saturated with RRC resources (overused) while others have unused RRC resources. However, as these resources are limited, there is the problem of their underutilization (non-optimal utilization of resources at the eNodeB level) due to static allocation (manual configuration of resources). The objective of this paper is to design an efficient machine learning model that will take as input some key performance indices (KPIs) like traffic data, RRC, simultaneous users, etc., for each eNodeB per hour and per day and accurately predict the number of needed RRC resources that will be dynamically allocated to them in order to avoid traffic and financial losses to the mobile network operator. To reach this target, three machine learning algorithms have been studied namely: linear regression, convolutional neural networks and long short-term memory (LSTM) to train three models and evaluate them. The model trained with the LSTM algorithm gave the best performance with 97% accuracy and was therefore implemented in the proposed solution for RRC resource allocation. An interconnection architecture is also proposed to embed the proposed solution into the Operation and maintenance network of a mobile network operator. In this way, the proposed solution can contribute to developing and expanding the concept of Self Organizing Network (SON) used in 4G and 5G networks.
作者 Eric Michel Deussom Djomadji Ivan Basile Kabiena Valery Nkemeni Ayrton Garcia Belinga À Njere Michael Ekonde Sone Eric Michel Deussom Djomadji;Ivan Basile Kabiena;Valery Nkemeni;Ayrton Garcia Belinga À Njere;Michael Ekonde Sone(Department of Electrical and Electronic Engineering, College of Technology, University of Buea, Buea, Cameroon;Division of ICT, National Advanced School of Post, Telecommunication and ICT, University of Yaounde I, Yaounde, Cameroon;Department of Computer Engineering and Telecommunications, National Advanced School of Engineering, University of Douala, Douala, Cameroon;Department of Computer Engineering, Faculty of Engineering and Technology, University of Buea, Buea, Cameroon)
出处 《Journal of Computer and Communications》 2023年第6期73-93,共21页 电脑和通信(英文)
关键词 RRC Resources 4G Network Linear Regression Convolutional Neural Networks Long Short-Term Memory PRECISION RRC Resources 4G Network Linear Regression Convolutional Neural Networks Long Short-Term Memory Precision
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部