期刊文献+

The Simplest Possible Fully Correct Solution of the Clay Millennium Problem about P vs. NP. A Simple Proof That P ≠ NP = EXPTIME

The Simplest Possible Fully Correct Solution of the Clay Millennium Problem about P vs. NP. A Simple Proof That P ≠ NP = EXPTIME
下载PDF
导出
摘要 In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept. In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept.
作者 Konstantinos E. Kyritsis Konstantinos E. Kyritsis(School of Economics, University of Ioannina, Ioannina, Greece)
机构地区 School of Economics
出处 《Journal of Computer and Communications》 2023年第8期181-194,共14页 电脑和通信(英文)
关键词 3<sup>rd</sup> Clay Millennium Problem EXPTIME-Complete Problems NP-Complexity P-Complexity 3<sup>rd</sup> Clay Millennium Problem EXPTIME-Complete Problems NP-Complexity P-Complexity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部