期刊文献+

Machine Learning Models for Heterogenous Network Security Anomaly Detection

Machine Learning Models for Heterogenous Network Security Anomaly Detection
下载PDF
导出
摘要 The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability. The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability.
作者 Mercy Diligence Ogah Joe Essien Martin Ogharandukun Monday Abdullahi Mercy Diligence Ogah;Joe Essien;Martin Ogharandukun;Monday Abdullahi(Department of Computer Science, Veritas University, Abuja, Nigeria;Department of Pure and Applied Physics, Veritas University, Abuja, Nigeria;Department of Computer Science, Air Force Institute of Technology, Kaduna, Nigeria)
出处 《Journal of Computer and Communications》 2024年第6期38-58,共21页 电脑和通信(英文)
关键词 Cyber-Security Network Anomaly Detection Machine Learning Random Forest Decision Tree Gaussian Naive Bayes Cyber-Security Network Anomaly Detection Machine Learning Random Forest Decision Tree Gaussian Naive Bayes
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部