期刊文献+

Malware Analysis and Classification: A Survey 被引量:5

Malware Analysis and Classification: A Survey
下载PDF
导出
摘要 One of the major and serious threats on the Internet today is malicious software, often referred to as a malware. The malwares being designed by attackers are polymorphic and metamorphic which have the ability to change their code as they propagate. Moreover, the diversity and volume of their variants severely undermine the effectiveness of traditional defenses which typically use signature based techniques and are unable to detect the previously unknown malicious executables. The variants of malware families share typical behavioral patterns reflecting their origin and purpose. The behavioral patterns obtained either statically or dynamically can be exploited to detect and classify unknown malwares into their known families using machine learning techniques. This survey paper provides an overview of techniques for analyzing and classifying the malwares. One of the major and serious threats on the Internet today is malicious software, often referred to as a malware. The malwares being designed by attackers are polymorphic and metamorphic which have the ability to change their code as they propagate. Moreover, the diversity and volume of their variants severely undermine the effectiveness of traditional defenses which typically use signature based techniques and are unable to detect the previously unknown malicious executables. The variants of malware families share typical behavioral patterns reflecting their origin and purpose. The behavioral patterns obtained either statically or dynamically can be exploited to detect and classify unknown malwares into their known families using machine learning techniques. This survey paper provides an overview of techniques for analyzing and classifying the malwares.
出处 《Journal of Information Security》 2014年第2期56-64,共9页 信息安全(英文)
关键词 MALWARE STATIC ANALYSIS Dynamic ANALYSIS MACHINE Learning Classification CLUSTERING Malware Static Analysis Dynamic Analysis Machine Learning Classification Clustering
  • 相关文献

同被引文献28

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部