期刊文献+

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses

An Intelligent Assessment Tool for Students’ Java Submissions in Introductory Programming Courses
下载PDF
导出
摘要 This paper presents a graph-based grading system for Java introductory programming courses, eGrader. This system grades submission both dynamically and statically to ensure a complete and through grading job. While dynamic analysis is based on JUnit framework, the static analysis is based on the graph representation of the program and its quality which is measured by software metrics. The graph representation is based on the Control Dependence Graphs (CDG) and Method Call Dependencies (MCD). eGrader outperforms existing systems in two ways: the ability of grading submission with semantic-errors, effectively, and generating reports for students, as a feedback on their performance, and instructors on the overall performance of the class. eGrader is well received by instructors not only for saving time and effort but also for its high success rate that is measured by four performance indicators which are sensitivity (97.37%), specificity (98.1%), precision (98.04%) and accuracy (97.07%). This paper presents a graph-based grading system for Java introductory programming courses, eGrader. This system grades submission both dynamically and statically to ensure a complete and through grading job. While dynamic analysis is based on JUnit framework, the static analysis is based on the graph representation of the program and its quality which is measured by software metrics. The graph representation is based on the Control Dependence Graphs (CDG) and Method Call Dependencies (MCD). eGrader outperforms existing systems in two ways: the ability of grading submission with semantic-errors, effectively, and generating reports for students, as a feedback on their performance, and instructors on the overall performance of the class. eGrader is well received by instructors not only for saving time and effort but also for its high success rate that is measured by four performance indicators which are sensitivity (97.37%), specificity (98.1%), precision (98.04%) and accuracy (97.07%).
出处 《Journal of Intelligent Learning Systems and Applications》 2012年第1期59-69,共11页 智能学习系统与应用(英文)
关键词 JAVA PROGRAMMING COMPUTER Aided Education COMPUTER Aided Assessment Control DEPENDENCE GRAPHS Java Programming Computer Aided Education Computer Aided Assessment Control Dependence Graphs
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部