期刊文献+

Classification Based on Invariants of the Data Matrix

Classification Based on Invariants of the Data Matrix
下载PDF
导出
摘要 The paper proposes a solution to the problem classification by calculating the sequence of matrices of feature indices that approximate invariants of the data matrix. Here the feature index is the index of interval for feature values, and the number of intervals is a parameter. Objects with the equal indices form granules, including information granules, which correspond to the objects of the training sample of a certain class. From the ratios of the information granules lengths, we obtain the frequency intervals of any feature that are the same for the appropriate objects of the control sample. Then, for an arbitrary object, we find object probability estimation in each class and then the class of object that corresponds to the maximum probability. For a sequence of the parameter values, we find a converging sequence of error rates. An additional effect is created by the parameters aimed at increasing the data variety and compressing rare data. The high accuracy and stability of the results obtained using this method have been confirmed for nine data set from the UCI repository. The proposed method has obvious advantages over existing ones due to the algorithm’s simplicity and universality, as well as the accuracy of the solutions. The paper proposes a solution to the problem classification by calculating the sequence of matrices of feature indices that approximate invariants of the data matrix. Here the feature index is the index of interval for feature values, and the number of intervals is a parameter. Objects with the equal indices form granules, including information granules, which correspond to the objects of the training sample of a certain class. From the ratios of the information granules lengths, we obtain the frequency intervals of any feature that are the same for the appropriate objects of the control sample. Then, for an arbitrary object, we find object probability estimation in each class and then the class of object that corresponds to the maximum probability. For a sequence of the parameter values, we find a converging sequence of error rates. An additional effect is created by the parameters aimed at increasing the data variety and compressing rare data. The high accuracy and stability of the results obtained using this method have been confirmed for nine data set from the UCI repository. The proposed method has obvious advantages over existing ones due to the algorithm’s simplicity and universality, as well as the accuracy of the solutions.
机构地区 St. Petersburg
出处 《Journal of Intelligent Learning Systems and Applications》 2017年第3期35-46,共12页 智能学习系统与应用(英文)
关键词 Artificial INTELLIGENCE CLASSIFICATION Algorithms GRANULAR COMPUTING Artificial Intelligence Classification Algorithms Granular Computing
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部