期刊文献+

Refractometric Fiber Optic Sensor for Detecting Salinity of Water

Refractometric Fiber Optic Sensor for Detecting Salinity of Water
下载PDF
导出
摘要 Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results. Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results.
出处 《Journal of Sensor Technology》 2013年第3期70-74,共5页 传感技术(英文)
关键词 FIBER OPTIC Chemical SENSOR Hardness of WATER REFRACTOMETRY Retro-Reflective Type FIBER OPTIC SENSOR SALINITY of WATER Fiber Optic Chemical Sensor Hardness of Water Refractometry Retro-Reflective Type Fiber Optic Sensor Salinity of Water
  • 相关文献

参考文献1

二级参考文献3

  • 1宋克辉,太阳能学报,1994年,15卷,3期,240页
  • 2晓义,GRAFTOOL 3.0~3.3版用户指南,1991年
  • 3团体著者,超声工业测量技术,1977年

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部