摘要
Nanoparticles are playing an increasingly important role in the development of biosensors. The sensitivity and performance of biosensors are being improved by using Nanoparticles for their construction. The use of these Nanoparticles has allowed the introduction of many new signal transduction technologies in biosensors. In this report, a comprehensive review of application of nanoparticles in Quartz Crystal Microbalance biosensors is presented. The main advantages of QCM in sensing fields include high sensitivity, high stability, fast response and low cost. In addition, it provides label-free detection capability for bio-sensing applications. Firstly, basic QCM’s design and characterization are described. Next, QCM biosensors based on modification of quartz substrate structure and their applications are digested. Nanoparticles and their utilizationin analysis are then illustrated. These include Nanoparticles in bio applications that cover Nanoparticles in Quartz Crystal Microbalance biosensors.
Nanoparticles are playing an increasingly important role in the development of biosensors. The sensitivity and performance of biosensors are being improved by using Nanoparticles for their construction. The use of these Nanoparticles has allowed the introduction of many new signal transduction technologies in biosensors. In this report, a comprehensive review of application of nanoparticles in Quartz Crystal Microbalance biosensors is presented. The main advantages of QCM in sensing fields include high sensitivity, high stability, fast response and low cost. In addition, it provides label-free detection capability for bio-sensing applications. Firstly, basic QCM’s design and characterization are described. Next, QCM biosensors based on modification of quartz substrate structure and their applications are digested. Nanoparticles and their utilizationin analysis are then illustrated. These include Nanoparticles in bio applications that cover Nanoparticles in Quartz Crystal Microbalance biosensors.