摘要
In this paper, a novel online fingerprint verification algorithm and distribution system is proposed. In the beginning, fingerprint acquisition, image preprocessing, and feature extraction are conducted on workstations. Then, the extracted feature is transmitted over the internet. Finally, fingerprint verification is processed on a server through web-based database query. For the fingerprint feature extraction, a template is imposed on the fingerprint image to calculate the type and direction of minutiae. A data structure of the feature set is designed in order to accurately match minutiae features between the testing fingerprint and the references in the database. An elastic structural feature matching algorithm is employed for feature verification. The proposed fingerprint matching algorithm is insensitive to fingerprint image distortion, scale, and rotation. Experimental results demonstrated that the matching algorithm is robust even on poor quality fingerprint images. Clients can remotely use ADO.NET on their workstations to verify the testing fingerprint and manipulate fingerprint feature database on the server through the internet. The proposed system performed well on benchmark fingerprint dataset.
In this paper, a novel online fingerprint verification algorithm and distribution system is proposed. In the beginning, fingerprint acquisition, image preprocessing, and feature extraction are conducted on workstations. Then, the extracted feature is transmitted over the internet. Finally, fingerprint verification is processed on a server through web-based database query. For the fingerprint feature extraction, a template is imposed on the fingerprint image to calculate the type and direction of minutiae. A data structure of the feature set is designed in order to accurately match minutiae features between the testing fingerprint and the references in the database. An elastic structural feature matching algorithm is employed for feature verification. The proposed fingerprint matching algorithm is insensitive to fingerprint image distortion, scale, and rotation. Experimental results demonstrated that the matching algorithm is robust even on poor quality fingerprint images. Clients can remotely use ADO.NET on their workstations to verify the testing fingerprint and manipulate fingerprint feature database on the server through the internet. The proposed system performed well on benchmark fingerprint dataset.