期刊文献+

Quantitative Convergence for Cerebral Processing of Information within the Geomagnetic Environment

Quantitative Convergence for Cerebral Processing of Information within the Geomagnetic Environment
下载PDF
导出
摘要 Human cerebral systems are immersed in the earth’s magnetic field. To be consistent with the results of several correlational studies, we found that the most accurate detection of information at 50 m occurred when the geomagnetic activity was ~5 nT. The corresponding magnetic energy within the cerebral volume is equivalent to approximately 3 million bits of Landauer Limit quantum which is equivalent to low resolution photographs. Non-linear analyses indicated that the induced electric fields from the typical time variation of geomagnetic intensity converged with the Adey voltages for the threshold for background entropy. The relevance of signal/noise ratios and the recent evidence indicate that imagery and cognition may actually reflect fields of biophotons within a fixed volume, which indicates that a natural processing system may be occurring under very specific conditions that involves detection of recondite information at a distance. Human cerebral systems are immersed in the earth’s magnetic field. To be consistent with the results of several correlational studies, we found that the most accurate detection of information at 50 m occurred when the geomagnetic activity was ~5 nT. The corresponding magnetic energy within the cerebral volume is equivalent to approximately 3 million bits of Landauer Limit quantum which is equivalent to low resolution photographs. Non-linear analyses indicated that the induced electric fields from the typical time variation of geomagnetic intensity converged with the Adey voltages for the threshold for background entropy. The relevance of signal/noise ratios and the recent evidence indicate that imagery and cognition may actually reflect fields of biophotons within a fixed volume, which indicates that a natural processing system may be occurring under very specific conditions that involves detection of recondite information at a distance.
机构地区 不详
出处 《Journal of Signal and Information Processing》 2013年第3期282-287,共6页 信号与信息处理(英文)
关键词 GEOMAGNETIC Activity Landauer LIMIT Adey VOLTAGES CEREBRAL ENERGIES Magnetic Energy Bit EQUIVALENTS Geomagnetic Activity Landauer Limit Adey Voltages Cerebral Energies Magnetic Energy Bit Equivalents
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部