期刊文献+

Deep Learning Based Target Tracking and Classification for Infrared Videos Using Compressive Measurements 被引量:2

Deep Learning Based Target Tracking and Classification for Infrared Videos Using Compressive Measurements
下载PDF
导出
摘要 Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one particular type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled. Even in such a special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using short wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the efficacy of the proposed approach even though the training data are very scarce. Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one particular type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled. Even in such a special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using short wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the efficacy of the proposed approach even though the training data are very scarce.
出处 《Journal of Signal and Information Processing》 2019年第4期167-199,共33页 信号与信息处理(英文)
关键词 Target Tracking Classification COMPRESSIVE Sensing SWIR MWIR LWIR YOLO ResNet Infrared VIDEOS Target Tracking Classification Compressive Sensing SWIR MWIR LWIR YOLO ResNet Infrared Videos
  • 相关文献

同被引文献18

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部