期刊文献+

Lightness Perception Model for Natural Images

Lightness Perception Model for Natural Images
下载PDF
导出
摘要 A perceptual lightness anchoring model based on visual cognition is proposed. It can recover absolute lightness of natural images using filling-in mechanism from single-scale boundaries. First, it adapts the response of retinal photoreceptors to varying levels of illumination. Then luminance-correlated contrast information can be obtained through multiplex encoding without additional luminance channel. Dynamic normalization is used to get smooth and continuous boundary contours. Different boundaries are used for ON and OFF channel diffusion layers. Theoretical analysis and simulation results indicate that the model could recover natural images under varying illumination, and solve the trapping, blurring and fogging problems to some extent. A perceptual lightness anchoring model based on visual cognition is proposed. It can recover absolute lightness of natural images using filling-in mechanism from single-scale boundaries. First, it adapts the response of retinal photoreceptors to varying levels of illumination. Then luminance-correlated contrast information can be obtained through multiplex encoding without additional luminance channel. Dynamic normalization is used to get smooth and continuous boundary contours. Different boundaries are used for ON and OFF channel diffusion layers. Theoretical analysis and simulation results indicate that the model could recover natural images under varying illumination, and solve the trapping, blurring and fogging problems to some extent.
机构地区 不详
出处 《Journal of Software Engineering and Applications》 2010年第7期696-703,共8页 软件工程与应用(英文)
关键词 PERCEPTION LIGHTNESS ANCHORING FILLING in ADAPTATION Multiplex CONTRAST Perception Lightness Anchoring Filling in Adaptation Multiplex Contrast
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部