摘要
Modeling human blood components and disorders is a complicated task. Few researchers have attempted to automate the process of detecting anemia in human blood. These attempts have produced satisfactory but not highly accurate results. In this paper, we present an efficient method to estimate hemoglobin value in human blood and detect anemia using microscopic color image data. We have developed a logit regression model using one thousand (1000) blood samples that were collected from Prince George Hospital laboratory. The output results of our model are compared with the results of the same sample set using CELL-DYN 3200 System in Prince George Hospital laboratory, and found to be near identical. These results exceed those reported in the literature. Moreover, the proposed method can be im-plemented in hardware with minimal circuitry and nominal cost.
Modeling human blood components and disorders is a complicated task. Few researchers have attempted to automate the process of detecting anemia in human blood. These attempts have produced satisfactory but not highly accurate results. In this paper, we present an efficient method to estimate hemoglobin value in human blood and detect anemia using microscopic color image data. We have developed a logit regression model using one thousand (1000) blood samples that were collected from Prince George Hospital laboratory. The output results of our model are compared with the results of the same sample set using CELL-DYN 3200 System in Prince George Hospital laboratory, and found to be near identical. These results exceed those reported in the literature. Moreover, the proposed method can be im-plemented in hardware with minimal circuitry and nominal cost.