期刊文献+

3D Human Pose Estimation from a Monocular Image Using Model Fitting in Eigenspaces

3D Human Pose Estimation from a Monocular Image Using Model Fitting in Eigenspaces
下载PDF
导出
摘要 Generally, there are two approaches for solving the problem of human pose estimation from monocular images. One is the learning-based approach, and the other is the model-based approach. The former method can estimate the poses rapidly but has the disadvantage of low estimation accuracy. While the latter method is able to accurately estimate the poses, its computational cost is high. In this paper, we propose a method to integrate the learning-based and model-based approaches to improve the estimation precision. In the learning-based approach, we use regression analysis to model the mapping from visual observations to human poses. In the model-based approach, a particle filter is employed on the results of regression analysis. To solve the curse of the dimensionality problem, the eigenspace of each motion is learned using Principal Component Analysis (PCA). Finally, the proposed method was estimated using the CMU Graphics Lab Motion Capture Database. The RMS error of human joint angles was 6.2 degrees using our method, an improvement of up to 0.9 degrees compared to the method without eigenspaces. Generally, there are two approaches for solving the problem of human pose estimation from monocular images. One is the learning-based approach, and the other is the model-based approach. The former method can estimate the poses rapidly but has the disadvantage of low estimation accuracy. While the latter method is able to accurately estimate the poses, its computational cost is high. In this paper, we propose a method to integrate the learning-based and model-based approaches to improve the estimation precision. In the learning-based approach, we use regression analysis to model the mapping from visual observations to human poses. In the model-based approach, a particle filter is employed on the results of regression analysis. To solve the curse of the dimensionality problem, the eigenspace of each motion is learned using Principal Component Analysis (PCA). Finally, the proposed method was estimated using the CMU Graphics Lab Motion Capture Database. The RMS error of human joint angles was 6.2 degrees using our method, an improvement of up to 0.9 degrees compared to the method without eigenspaces.
机构地区 不详
出处 《Journal of Software Engineering and Applications》 2010年第11期1060-1066,共7页 软件工程与应用(英文)
关键词 HOG Regression Analysis Eigenspaces PARTICLE FILTER POSE Estimation HOG Regression Analysis Eigenspaces Particle Filter Pose Estimation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部