期刊文献+

Human Body Tracking and Pose Estimation Using Modified Camshift Algorithm

Human Body Tracking and Pose Estimation Using Modified Camshift Algorithm
下载PDF
导出
摘要 In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMShift Algorithm we propose searches the skin color region by detecting the skin color area from background model. Kalman filter stabilizes the floated search area of CAMShift Algorithm. Each occlusion areas are avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed modified Camshaft algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions. In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMShift Algorithm we propose searches the skin color region by detecting the skin color area from background model. Kalman filter stabilizes the floated search area of CAMShift Algorithm. Each occlusion areas are avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed modified Camshaft algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions.
出处 《Journal of Software Engineering and Applications》 2013年第5期37-42,共6页 软件工程与应用(英文)
关键词 BODY TRACKING CAMSHIFT POSE Estimation KALMAN Filter WEIGHTED Search Windows Body Tracking CAMShift Pose Estimation Kalman Filter Weighted Search Windows
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部