期刊文献+

New Topological Approaches for Data Granulation

New Topological Approaches for Data Granulation
下载PDF
导出
摘要 Data granulation is a good tool of decision making in various types of real life applications. The basic ideas of data granulation have appeared in many fields, such as interval analysis, quantization, rough set theory, Dempster-Shafer theory of belief functions, divide and conquer, cluster analysis, machine learning, databases, information retrieval, and many others. In this paper, we initiate some new topological tools for data granulation using rough set approximations. Moreover, we define some topological measures of data granulation in topological I formation systems. Topological generalizations using δβ-open sets and their applications of information granulation are developed. Data granulation is a good tool of decision making in various types of real life applications. The basic ideas of data granulation have appeared in many fields, such as interval analysis, quantization, rough set theory, Dempster-Shafer theory of belief functions, divide and conquer, cluster analysis, machine learning, databases, information retrieval, and many others. In this paper, we initiate some new topological tools for data granulation using rough set approximations. Moreover, we define some topological measures of data granulation in topological I formation systems. Topological generalizations using δβ-open sets and their applications of information granulation are developed.
出处 《Journal of Software Engineering and Applications》 2013年第7期1-6,共6页 软件工程与应用(英文)
关键词 Knowledge GRANULATION TOPOLOGICAL SPACES ROUGH SETS DATA Mining Decision Making Fuzzy SETS Knowledge Granulation Topological Spaces Rough Sets Data Mining Decision Making Fuzzy Sets
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部