摘要
Although Video-On-Demand (VOD) has been in existence for years, its cross-platform applicability in cloud service environments is still in increasing need. In this paper, an Adaptive Video-On-Demand (AVOD) framework that is suitable for private cloud environments is proposed. Private cloud has the key advantage of satisfying the real need of both consumers and providers. Hence, demands such as reasonable benefits for provider and high quality for consumers are essential design considerations in this framework. The difficulty is that these two factors are always high in one end and low in the other, and hard to find a delicate balance. Cloud service could be an opportunity for the multimedia providers to obtain higher benefits and cost less for the consumers but with an even better quality in service. An adaptive framework for such a cloud service environment is proposed to resolve this problem. Some interesting phenomena are observed from the experimental results including CPU utilization, data reading and writing speed, memory usage, port configuration execution time, and bandwidth.
Although Video-On-Demand (VOD) has been in existence for years, its cross-platform applicability in cloud service environments is still in increasing need. In this paper, an Adaptive Video-On-Demand (AVOD) framework that is suitable for private cloud environments is proposed. Private cloud has the key advantage of satisfying the real need of both consumers and providers. Hence, demands such as reasonable benefits for provider and high quality for consumers are essential design considerations in this framework. The difficulty is that these two factors are always high in one end and low in the other, and hard to find a delicate balance. Cloud service could be an opportunity for the multimedia providers to obtain higher benefits and cost less for the consumers but with an even better quality in service. An adaptive framework for such a cloud service environment is proposed to resolve this problem. Some interesting phenomena are observed from the experimental results including CPU utilization, data reading and writing speed, memory usage, port configuration execution time, and bandwidth.
作者
Chao-Hsien Hsieh
Chih-Horng Ke
Chiang Lee
Chao-Hsien Hsieh;Chih-Horng Ke;Chiang Lee(Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan;Department of Information Management, Chang Jung Christian University, Taiwan)