摘要
Data mining techniques and information personalization have made significant growth in the past decade. Enormous volume of data is generated every day. Recommender systems can help users to find their specific information in the extensive volume of information. Several techniques have been presented for development of Recommender System (RS). One of these techniques is the Evolutionary Computing (EC), which can optimize and improve RS in the various applications. This study investigates the number of publications, focusing on some aspects such as the recommendation techniques, the evaluation methods and the datasets which are used.
Data mining techniques and information personalization have made significant growth in the past decade. Enormous volume of data is generated every day. Recommender systems can help users to find their specific information in the extensive volume of information. Several techniques have been presented for development of Recommender System (RS). One of these techniques is the Evolutionary Computing (EC), which can optimize and improve RS in the various applications. This study investigates the number of publications, focusing on some aspects such as the recommendation techniques, the evaluation methods and the datasets which are used.