期刊文献+

TEM-SOFT:Academic Software for the Ergo-Mechanic Investigation of Tailgate Operation

下载PDF
导出
摘要 Because of their technical advantages over ordinary metal springs, gas springs find usage in wide range of applications from furniture to aerospace industry as lifting, lowering or damping assists. Their integration to the tailgate operations in automotive industry is a challenging area, where not only the fundamental gas spring characteristics but also the mounting settings, working environment and tailgate body structure should be considered. The design and integration of these components will determine manual force exertion of operators thus the consideration of ergonomic characteristics of different populations is crucial. This paper introduces a recent visual academic software package, entitled TEM-SOFT, which is developed as a part of this research to perform ergo-mechanic simulations of tailgate operations with a fast, reliable and contemporary engineering approach and it is suitable for engineers and under-post graduate level students of mechanical and industrial engineering programs in the universities. The software developed and presented in this paper features all aspects of tailgate-gas spring operations considering the assembly scheme, tailgate mass center, gas spring type and working temperature in order to compute the required manual forces and the individual and combined impacts of acting parameters. Sufficient amount of scenarios were considered and the results were evaluated and discussed extensively. In addition to the other key findings, conducted research has shown that stronger gas springs, more effectively tend to move the critical tailgate position angle—where no operator force is needed to keep the tailgate opening—to the initial phases of the opening operation. A trade-off of this benefit is a superior initial manual force during closing. Because of their technical advantages over ordinary metal springs, gas springs find usage in wide range of applications from furniture to aerospace industry as lifting, lowering or damping assists. Their integration to the tailgate operations in automotive industry is a challenging area, where not only the fundamental gas spring characteristics but also the mounting settings, working environment and tailgate body structure should be considered. The design and integration of these components will determine manual force exertion of operators thus the consideration of ergonomic characteristics of different populations is crucial. This paper introduces a recent visual academic software package, entitled TEM-SOFT, which is developed as a part of this research to perform ergo-mechanic simulations of tailgate operations with a fast, reliable and contemporary engineering approach and it is suitable for engineers and under-post graduate level students of mechanical and industrial engineering programs in the universities. The software developed and presented in this paper features all aspects of tailgate-gas spring operations considering the assembly scheme, tailgate mass center, gas spring type and working temperature in order to compute the required manual forces and the individual and combined impacts of acting parameters. Sufficient amount of scenarios were considered and the results were evaluated and discussed extensively. In addition to the other key findings, conducted research has shown that stronger gas springs, more effectively tend to move the critical tailgate position angle—where no operator force is needed to keep the tailgate opening—to the initial phases of the opening operation. A trade-off of this benefit is a superior initial manual force during closing.
出处 《Journal of Software Engineering and Applications》 2018年第8期383-407,共25页 软件工程与应用(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部