期刊文献+

Feedback Control of Medication Delivery Device Using Machine Learning-Based Control Co-Design

Feedback Control of Medication Delivery Device Using Machine Learning-Based Control Co-Design
下载PDF
导出
摘要 Although the opioid crisis is a problem worldwide, recent emerging technology has the potential of curtailing the epidemic. By administering micro-doses of medication as needed, a feedback-driven medicine pump could lessen the highs and lows associated with the formation of an addiction. The focus of this study was to develop a feedback control loop for this pump that optimizes drug concentration in the bloodstream based on set criteria. In the process of optimization of the system, the mathematical model representing the system was analyzed to find an open loop transfer function. Using this function, a PID tuner was applied to set feedback control. Both machine learning (ML) and deep learning (DL) techniques are explored to act as a classifier that aids the pump in administering doses. The setpoint concentration of medication in the patient’s bloodstream was calculated to be 7.55 mg/ml this setpoint was the basis for steady state concentration of the transfer function. When a PID tuner was added to the feedback system, the plot was optimized to satisfy the design criteria of a rise time less than 25-minutes and no more than a 5% overshoot of the setpoint concentration. Naïve Bayesian (NB), Tree and support-vector machines (SVM) classifiers achieved the best classification accuracy of 100%. A DL network was successfully developed to predict patient class. This work is the theoretical basis for developing a feedback-driven medicine pump and an algorithm that can classify patients based on their body’s metabolism that will aid the doctor in formatting the medicine pump so that the patient is receiving the proper amount of medication. Although the opioid crisis is a problem worldwide, recent emerging technology has the potential of curtailing the epidemic. By administering micro-doses of medication as needed, a feedback-driven medicine pump could lessen the highs and lows associated with the formation of an addiction. The focus of this study was to develop a feedback control loop for this pump that optimizes drug concentration in the bloodstream based on set criteria. In the process of optimization of the system, the mathematical model representing the system was analyzed to find an open loop transfer function. Using this function, a PID tuner was applied to set feedback control. Both machine learning (ML) and deep learning (DL) techniques are explored to act as a classifier that aids the pump in administering doses. The setpoint concentration of medication in the patient’s bloodstream was calculated to be 7.55 mg/ml this setpoint was the basis for steady state concentration of the transfer function. When a PID tuner was added to the feedback system, the plot was optimized to satisfy the design criteria of a rise time less than 25-minutes and no more than a 5% overshoot of the setpoint concentration. Naïve Bayesian (NB), Tree and support-vector machines (SVM) classifiers achieved the best classification accuracy of 100%. A DL network was successfully developed to predict patient class. This work is the theoretical basis for developing a feedback-driven medicine pump and an algorithm that can classify patients based on their body’s metabolism that will aid the doctor in formatting the medicine pump so that the patient is receiving the proper amount of medication.
作者 Jacob Anthony Jacob Anthony Ashley Dixon Chung Hyun Goh Matthew Lucci Jacob Anthony;Jacob Anthony;Ashley Dixon;Chung Hyun Goh;Matthew Lucci(Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX, USA;The Runatek Corporation, Dallas, TX, USA)
出处 《Journal of Software Engineering and Applications》 2022年第7期220-239,共20页 软件工程与应用(英文)
关键词 Machine Learning PID Medication Delivery Device Machine Learning PID Medication Delivery Device
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部