期刊文献+

Positioning with Wide-Area GNSS Networks: Concept and Application 被引量:1

Positioning with Wide-Area GNSS Networks: Concept and Application
下载PDF
导出
摘要 The use of Global Navigation Satellite Systems (GNSS) for positioning has revolutionized the way location data is be- ing collected. The NAVigation System with Time And Ranging Global Positioning System (GPS), which is a principal component of the global navigation satellite system (GNSS);is a satellite-based radio navigation system that provides positions of points of interest and time information to users. GPS positional accuracy can be improved by using differential corrections obtained through a technique called Differential GPS (DGPS), which is known to provide the most accurate positioning results. Differential correction can be applied in real time at the data collection phase or in the of- fice, at the post-processing phase. DGPS is generally used for positioning purposes through static or kinematics GPS surveys. In static GPS surveys, one receiver is placed at a point whose coordinates are known and the other receiver is placed over a point whose coordinates are desired. In kinematic surveys, one receiver remains at one point (base station) normally with known coordinates, and the other receiver (rover) moves from point to point in the project area. Kinematic surveys in which points positions are computed on-the-fly (OTF) are known as real-time kinematic (RTK). RTK surveys provide real-time locations of points of interest needed in many applications. Positioning with wide-area GNSS networks is basically based on the DGPS and RTK concepts. Observables from a network of a finite number of GPS receivers over an area are processed by a server at a central location (network server) and made available to the users of the network later or in real-time through radio-based, satellite, or wireless communications. This article provides a review of the concept and application of positioning with wide-area GNSS networks. The use of Global Navigation Satellite Systems (GNSS) for positioning has revolutionized the way location data is be- ing collected. The NAVigation System with Time And Ranging Global Positioning System (GPS), which is a principal component of the global navigation satellite system (GNSS);is a satellite-based radio navigation system that provides positions of points of interest and time information to users. GPS positional accuracy can be improved by using differential corrections obtained through a technique called Differential GPS (DGPS), which is known to provide the most accurate positioning results. Differential correction can be applied in real time at the data collection phase or in the of- fice, at the post-processing phase. DGPS is generally used for positioning purposes through static or kinematics GPS surveys. In static GPS surveys, one receiver is placed at a point whose coordinates are known and the other receiver is placed over a point whose coordinates are desired. In kinematic surveys, one receiver remains at one point (base station) normally with known coordinates, and the other receiver (rover) moves from point to point in the project area. Kinematic surveys in which points positions are computed on-the-fly (OTF) are known as real-time kinematic (RTK). RTK surveys provide real-time locations of points of interest needed in many applications. Positioning with wide-area GNSS networks is basically based on the DGPS and RTK concepts. Observables from a network of a finite number of GPS receivers over an area are processed by a server at a central location (network server) and made available to the users of the network later or in real-time through radio-based, satellite, or wireless communications. This article provides a review of the concept and application of positioning with wide-area GNSS networks.
作者 Tarig A. Ali
出处 《Positioning》 2012年第1期1-6,共6页 导航(英文)
关键词 Wide-Area GNSS Network Virtual REFERENCE STATION (VRS) Wide-Area GNSS Network Virtual Reference Station (VRS)
  • 相关文献

同被引文献12

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部