期刊文献+

Data Discrimination in Fault-Prone Sensor Networks

Data Discrimination in Fault-Prone Sensor Networks
下载PDF
导出
摘要 While sensor networks have been used in various applications because of the automatic sensing capability and ad-hoc organization of sensor nodes, the fault-prone characteristic of sensor networks has challenged the event detection and the anomaly detection which, to some extent, have neglected the importance of discriminating events and errors. Considering data uncertainty, in this article, we present the problem of data discrimination in fault-prone sensor networks, analyze the similarities and the differences between events and errors, and design a multi-level systematic discrimination framework. In each step, the framework filters erroneous data from the raw data and marks potential event samples for the next-step processing. The raw data set D is finally partitioned into three subsets, Devent, Derror and Dordinary. Both the scenario-based simulations and the experiments on real-sensed data are carried out. The statistical results of various discrimination metrics demonstrate high distinction ratio as well as the robustness in different cases of the network. While sensor networks have been used in various applications because of the automatic sensing capability and ad-hoc organization of sensor nodes, the fault-prone characteristic of sensor networks has challenged the event detection and the anomaly detection which, to some extent, have neglected the importance of discriminating events and errors. Considering data uncertainty, in this article, we present the problem of data discrimination in fault-prone sensor networks, analyze the similarities and the differences between events and errors, and design a multi-level systematic discrimination framework. In each step, the framework filters erroneous data from the raw data and marks potential event samples for the next-step processing. The raw data set D is finally partitioned into three subsets, Devent, Derror and Dordinary. Both the scenario-based simulations and the experiments on real-sensed data are carried out. The statistical results of various discrimination metrics demonstrate high distinction ratio as well as the robustness in different cases of the network.
机构地区 不详
出处 《Wireless Sensor Network》 2010年第4期285-292,共8页 无线传感网络(英文)
关键词 Data DISCRIMINATION Fault-Prone Sensor Network EVENT Error DISTINCTION Ratio Data Discrimination Fault-Prone Sensor Network Event Error Distinction Ratio
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部