期刊文献+

Passive Loss Inference in Wireless Sensor Networks Using EM Algorithm

Passive Loss Inference in Wireless Sensor Networks Using EM Algorithm
下载PDF
导出
摘要 Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability. Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.
机构地区 不详
出处 《Wireless Sensor Network》 2010年第7期512-519,共8页 无线传感网络(英文)
关键词 Wireless Sensor Networks PASSIVE Measurement Network TOMOGRAPHY Data AGGREGATION EM Algorithm Wireless Sensor Networks Passive Measurement Network Tomography Data Aggregation EM Algorithm
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部