摘要
Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.
Wireless sensor networks (WSNs) and wireless mesh networks (WMNs) are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. Currently, plenty of protocols are available on the security of either wireless sensor networks or wireless mesh networks, an investigation in peer work underpins the fact that neither of these protocols is adapt to the interconnection of these network types. The internal cause relies on the fact that they differ in terms of complexity, scalability and network abstraction level. Therefore, in this article, we propose a unified security framework with three key management protocols, MPKM, MGKM, and TKM which are able to provide basic functionalities on the simplest devices and advanced functionalities on high performance nodes. We perform a detailed performance evaluation on our protocols against some important metrics such as scalability, key connectivity and compromise resilience, and we also compare our solution to the current keying protocols for WSNs and WMNs.