期刊文献+

Energy Saving in WSN with Directed Connectivity

Energy Saving in WSN with Directed Connectivity
下载PDF
导出
摘要 Wireless Sensor Networks have been implemented in many indoor applications such as offices, hospitals, laboratories for monitoring the parameters such as temperature, humidity etc. Most of the applications have used omnidirectional antennas. In randomly deployed ad hoc wireless sensor networks, this may be useful to achieve coverage and connectivity with unknown neighbors. In case of deterministic deployments such as in case of food grain storages where locations of the sensor nodes are mostly fixed, the main challenges are unstable and vacillating conditions in the godowns during loading and unloading of sacs as well as unpredictable changes in climate. Most of the commercial motes generally use omnidirectional antennas. Energy overheads increase considerably with omnidirectional antennas. Directivity increases energy saving but may be at the cost of redundancy. This paper is mainly focused on the energy advantage in ad hoc wireless sensor networks deployed in large food grain storages and energy overheads required for obtaining certain level of redundancy using directional antennas. Finally, we conclude that energy advantage can be achieved even if we overcome redundancy to certain extent. Wireless Sensor Networks have been implemented in many indoor applications such as offices, hospitals, laboratories for monitoring the parameters such as temperature, humidity etc. Most of the applications have used omnidirectional antennas. In randomly deployed ad hoc wireless sensor networks, this may be useful to achieve coverage and connectivity with unknown neighbors. In case of deterministic deployments such as in case of food grain storages where locations of the sensor nodes are mostly fixed, the main challenges are unstable and vacillating conditions in the godowns during loading and unloading of sacs as well as unpredictable changes in climate. Most of the commercial motes generally use omnidirectional antennas. Energy overheads increase considerably with omnidirectional antennas. Directivity increases energy saving but may be at the cost of redundancy. This paper is mainly focused on the energy advantage in ad hoc wireless sensor networks deployed in large food grain storages and energy overheads required for obtaining certain level of redundancy using directional antennas. Finally, we conclude that energy advantage can be achieved even if we overcome redundancy to certain extent.
出处 《Wireless Sensor Network》 2013年第6期121-126,共6页 无线传感网络(英文)
关键词 Directed COVERAGE Food Grain WAREHOUSE (FGW) Directional Antenna DETERMINISTIC DEPLOYMENT Energy ADVANTAGE QoS REDUNDANCY Directed Coverage Food Grain Warehouse (FGW) Directional Antenna Deterministic Deployment Energy Advantage QoS Redundancy
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部