期刊文献+

Compressors for Hyper-Sonic Engines —A Theoretical Study of Future Compressors for Hyper Sonic Engines

Compressors for Hyper-Sonic Engines —A Theoretical Study of Future Compressors for Hyper Sonic Engines
下载PDF
导出
摘要 This paper is an eye opening to the new horizon of the design of operational Compressors in our jet engines. That are compressors usually perform an operation called isentropic process and which levitate the pressure and temperature to the optimum level which require for effective ignition. Basically, our compressors have several sets of blades to perform this function, more precisely saying Rotor and stator blades. Where rotor blade provides air molecule to push at very high velocity to the Stationary blade and when the air Enders to the Stator, the stator races its pressure to move on to the next stage. And we call this set of Stator and rotor as a stage ref [1]. However, in this work, I consider the geometry of the incoming air molecule and how it transforms its physical quantities such as Pressure and temperature ref [2]. For that I tie the concept of Thermodynamic and mechanics on the platform of Tensor analysis ref [3]. That is, I consider the quantities like Pressure, Temperature and rate of flow are their corresponding vector spaces and energy related quintets like heat, work as the scaling elements on the above vector space. And quantities such as entropy enthalpy and specific heat capacity are corresponding physics of it. Considering the advantages, one of the important advantages of this approach is the applicability of results of this work to the formulation of blade less compression Example: Ram and Scram jet engine. Again, the relevant upgrading which is essential for future hypersonic air crafts can achieve from this study and this will be a mile stone for bright air and space travel. To conclude, this approach will be a great transformation on the conventional idea for realization of compression for operational Scram and Ram jet engines ref [4] [5]. This paper is an eye opening to the new horizon of the design of operational Compressors in our jet engines. That are compressors usually perform an operation called isentropic process and which levitate the pressure and temperature to the optimum level which require for effective ignition. Basically, our compressors have several sets of blades to perform this function, more precisely saying Rotor and stator blades. Where rotor blade provides air molecule to push at very high velocity to the Stationary blade and when the air Enders to the Stator, the stator races its pressure to move on to the next stage. And we call this set of Stator and rotor as a stage ref [1]. However, in this work, I consider the geometry of the incoming air molecule and how it transforms its physical quantities such as Pressure and temperature ref [2]. For that I tie the concept of Thermodynamic and mechanics on the platform of Tensor analysis ref [3]. That is, I consider the quantities like Pressure, Temperature and rate of flow are their corresponding vector spaces and energy related quintets like heat, work as the scaling elements on the above vector space. And quantities such as entropy enthalpy and specific heat capacity are corresponding physics of it. Considering the advantages, one of the important advantages of this approach is the applicability of results of this work to the formulation of blade less compression Example: Ram and Scram jet engine. Again, the relevant upgrading which is essential for future hypersonic air crafts can achieve from this study and this will be a mile stone for bright air and space travel. To conclude, this approach will be a great transformation on the conventional idea for realization of compression for operational Scram and Ram jet engines ref [4] [5].
出处 《Advances in Aerospace Science and Technology》 2018年第4期89-99,共11页 航空科学与技术(英文)
关键词 Adiabatic Compression Power COMPRESSOR M-B Distribution RIEMANN Geometry Matric Tensor High Energy Molecule Ref BESSEL Function EFFICIENCY of the COMPRESSOR Poly-Entropy EFFICIENCY Adiabatic Compression Power Compressor M-B Distribution Riemann Geometry Matric Tensor High Energy Molecule Ref Bessel Function Efficiency of the Compressor Poly-Entropy Efficiency
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部