期刊文献+

A Study of the Deformation Derivatives for a Ti-6Al-4V Inertia Friction Weld

A Study of the Deformation Derivatives for a Ti-6Al-4V Inertia Friction Weld
下载PDF
导出
摘要 The velocity–versus-time rundown curves from two experimental Ti-6Al-4V inertia friction welds were analysed and differentiated several times, to produce rotational acceleration, jerk, jounce (or snap), crackle and pop versus-times curves for each weld. Titanium alloys and their mechanical properties are known to be highly sensitive to strain rate as the material is deformed, though nothing has ever been considered in terms of the higher-order time-derivatives of position. These curves have been studied and analysed further, for a more complete understanding of the derivative trends. Rotational acceleration and jerk traces both display behavior patterns across the two welds as the part rotates under action from the flywheel. The rotational snap also displays a pattern in this derivative during the final approximately 0.5 s of welding, as the energy dissipates. Evidence of a distinct oscillatory pattern in the rotational crackle and pop terms was noted for one weld when differentiating over a larger time-base, though could not be replicated in the 2<sup><span style="font-family:Verdana;">nd</span></sup><span style="font-family:Verdana;"> weld. The </span><span style="font-family:Verdana;">higher derivative curves allow distinction of different process regimes, indi</span><span style="font-family:Verdana;">cat</span><span style="font-family:Verdana;">ing that inertial energy mostly influences the time-base of dynamically</span><span style="font-family:Verdana;"> steady-</span><span style="font-family:Verdana;">state phase. Qualitative differences between initial energies are evident in</span><span style="font-family:Verdana;"> higher derivatives.</span> The velocity–versus-time rundown curves from two experimental Ti-6Al-4V inertia friction welds were analysed and differentiated several times, to produce rotational acceleration, jerk, jounce (or snap), crackle and pop versus-times curves for each weld. Titanium alloys and their mechanical properties are known to be highly sensitive to strain rate as the material is deformed, though nothing has ever been considered in terms of the higher-order time-derivatives of position. These curves have been studied and analysed further, for a more complete understanding of the derivative trends. Rotational acceleration and jerk traces both display behavior patterns across the two welds as the part rotates under action from the flywheel. The rotational snap also displays a pattern in this derivative during the final approximately 0.5 s of welding, as the energy dissipates. Evidence of a distinct oscillatory pattern in the rotational crackle and pop terms was noted for one weld when differentiating over a larger time-base, though could not be replicated in the 2<sup><span style="font-family:Verdana;">nd</span></sup><span style="font-family:Verdana;"> weld. The </span><span style="font-family:Verdana;">higher derivative curves allow distinction of different process regimes, indi</span><span style="font-family:Verdana;">cat</span><span style="font-family:Verdana;">ing that inertial energy mostly influences the time-base of dynamically</span><span style="font-family:Verdana;"> steady-</span><span style="font-family:Verdana;">state phase. Qualitative differences between initial energies are evident in</span><span style="font-family:Verdana;"> higher derivatives.</span>
作者 Richard P. Turner Nils Warnken Jeffery W. Brooks Richard P. Turner;Nils Warnken;Jeffery W. Brooks(School of Metallurgy & Materials, University of Birmingham, Birmingham, UK)
出处 《Advances in Aerospace Science and Technology》 2021年第2期114-121,共8页 航空科学与技术(英文)
关键词 ROTATION Acceleration JERK SNAP Crackle POP Rotation Acceleration Jerk Snap Crackle Pop
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部