期刊文献+

Prediction of Aerothermal Environment and Heat Transfer for Hypersonic Vehicles with Different Aerodynamic Shapes Based on C++

Prediction of Aerothermal Environment and Heat Transfer for Hypersonic Vehicles with Different Aerodynamic Shapes Based on C++
下载PDF
导出
摘要 This research paper discusses constructing a unified framework to develop a full-rate scheme for hypersonic heating calculations. The method uses a flow tracing technique with normal phase vector adjustment in a non-structured delineated grid combined with empirical formulations for convective heat transfer standing and non-standing heat flow engineering. This is done using dev-C++ programming in the C++ language environment. Comparisons of the aerodynamic thermal environment with wind tunnel experimental data for the Space Shuttle and Apollo return capsules and standing point heat transfer measurements for the Fire II return capsule was carried out in the hypersonic Mach number range of 6 - 35 Ma. The tests were carried out on an 11th Gen Intel(R) Core(TM) i5-1135G7 processor with a valuable test time of 45 mins. The agreement is good, but due to the complexity of the space shuttle tail, the measurements are still subject to large errors compared to wind tunnel experiments. A comparison of the measured Fire-II return capsule standing-point heat values with the theory for calculating standing-point heat fluxes simulated using Fay & Riddell and wind tunnel experiments is provided to verify the validity of this procedure for hypersonic vehicle heat transfer prediction. The heat fluxes assessed using this method for different aerodynamic profiles of hypersonic vehicles agree very well with the theoretical solution. This research paper discusses constructing a unified framework to develop a full-rate scheme for hypersonic heating calculations. The method uses a flow tracing technique with normal phase vector adjustment in a non-structured delineated grid combined with empirical formulations for convective heat transfer standing and non-standing heat flow engineering. This is done using dev-C++ programming in the C++ language environment. Comparisons of the aerodynamic thermal environment with wind tunnel experimental data for the Space Shuttle and Apollo return capsules and standing point heat transfer measurements for the Fire II return capsule was carried out in the hypersonic Mach number range of 6 - 35 Ma. The tests were carried out on an 11th Gen Intel(R) Core(TM) i5-1135G7 processor with a valuable test time of 45 mins. The agreement is good, but due to the complexity of the space shuttle tail, the measurements are still subject to large errors compared to wind tunnel experiments. A comparison of the measured Fire-II return capsule standing-point heat values with the theory for calculating standing-point heat fluxes simulated using Fay & Riddell and wind tunnel experiments is provided to verify the validity of this procedure for hypersonic vehicle heat transfer prediction. The heat fluxes assessed using this method for different aerodynamic profiles of hypersonic vehicles agree very well with the theoretical solution.
作者 Tianqiang Huang Guoyi He Qi Wang Tianqiang Huang;Guoyi He;Qi Wang(Nanchang Hangkong University, Faculty of Flight Engineering, Nanchang, China)
出处 《Advances in Aerospace Science and Technology》 2022年第3期123-134,共12页 航空科学与技术(英文)
关键词 HYPERSONIC C++ Aerodynamic Heating Reentry Vehicle Aerodynamic Thermal Environment Hypersonic C++ Aerodynamic Heating Reentry Vehicle Aerodynamic Thermal Environment
  • 相关文献

参考文献1

二级参考文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部