摘要
Seeking effective solutions to control and mitigate the interaction between drilling fluids and clay formations has been a challenge for many years, and various shale inhibitors have shown excellent results in problematic shale formations around the world. Herein, the hyperbranched polyamine (HBPA) inhibitor with a higher ratio of amine groups and obvious tendentiousness in protonation was successfully synthesized from ethylenediamine, acryloyl chloride and aziridine by five steps, in which the metal-organic framework (MOF) was employed as a catalyst for ring-open polycondensation (ROP). The structure and purity were confirmed by nuclear magnetic resonance hydrogen spectroscopy and high-performance liquid chromatography (HPLC) respectively. The HBPA displays more excellent performance than EDA and KCl widely applied in the oil field. After aging at 80°C and 180°C, the YP of a slurry system containing 25 wt.% bentonite and 2 wt.% HBPA are just 8.5 Pa and 5.5 Pa (wt.%: percentage of mass), respectively. The swelling lengths of 2 wt.% HBPA are estimated to be 1.78 mm, which falls by 70% compared with that of freshwater. Under a hot rolling aging temperature of 180°C, the HBPA system demonstrates a significant inhibition with more than 85% shale cuttings recovery rate and is superior to conventional EDA and KCl. Mechanism analysis further validates that the HBPA can help to increase the zeta potential.
Seeking effective solutions to control and mitigate the interaction between drilling fluids and clay formations has been a challenge for many years, and various shale inhibitors have shown excellent results in problematic shale formations around the world. Herein, the hyperbranched polyamine (HBPA) inhibitor with a higher ratio of amine groups and obvious tendentiousness in protonation was successfully synthesized from ethylenediamine, acryloyl chloride and aziridine by five steps, in which the metal-organic framework (MOF) was employed as a catalyst for ring-open polycondensation (ROP). The structure and purity were confirmed by nuclear magnetic resonance hydrogen spectroscopy and high-performance liquid chromatography (HPLC) respectively. The HBPA displays more excellent performance than EDA and KCl widely applied in the oil field. After aging at 80°C and 180°C, the YP of a slurry system containing 25 wt.% bentonite and 2 wt.% HBPA are just 8.5 Pa and 5.5 Pa (wt.%: percentage of mass), respectively. The swelling lengths of 2 wt.% HBPA are estimated to be 1.78 mm, which falls by 70% compared with that of freshwater. Under a hot rolling aging temperature of 180°C, the HBPA system demonstrates a significant inhibition with more than 85% shale cuttings recovery rate and is superior to conventional EDA and KCl. Mechanism analysis further validates that the HBPA can help to increase the zeta potential.
作者
Yuan Liu
Xiao Luo
Jianbo Wang
Zhiqi Zhou
Yue Luo
Yang Bai
Yuan Liu;Xiao Luo;Jianbo Wang;Zhiqi Zhou;Yue Luo;Yang Bai(School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, China;Oilfield Chemical Division of China Oilfield Services Co., Ltd., Zhanjiang, China;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, China)